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We derive the phase diffusion and mean drift equations for the Oberbeck-Boussinesq 
equations in large-aspect-ratio containers. We are able to recover all the long-wave 
instability boundaries (Eckhaus, zigzag, skew-varicose) of straight parallel rolls 
found previously by Busse and his colleagues. Moreover, the development of the 
skew-varicose instability can be followed and it becomes clear how the mean drift 
field conspires to enhance the necking of phase contours necessary for the production 
of dislocation pairs. We can calculate the wavenumber selected by curved patterns 
and find very close agreement with the dominant wavenumbers observed by 
Heutmaker & Gollub a t  Prandtl number 2.5, and by Steinberg, Ahlers & Cannell a t  
Prandtl number 6.1. We find a new instability, the focus instability, which causes 
circular target patterns to destabilize and which, at sufficiently large Rayleigh 
numbers, may play a major role in the onset of time dependence. Further, we predict 
the values of the Rayleigh number a t  which the time-dependent but spatially 
ordered patterns will become spatially disordered. The key difficulty in obtaining 
these equations is the fact that  the phase diffusion equation appears as a solvability 
condition a t  order e (the inverse aspect ratio) whereas the mean drift equation is the 
solvability condition a t  order 2. Therefore, we had to use extremely robust inversion 
methods to  solve the singular equations at order e and the techniques we use should 
prove to be invaluable in a wide range of similar situations. Finally, we discuss the 
introduction of the amplitude as an active order parameter near pattern defects, such 
as dislocations and foci. 

1. Introduction 

1.1, General discussion and goals 

Convection in a horizontal layer of fluid heated from below provides a canonical 
example of pattern-forming transitions in continuous dissipative systems far from 
equilibrium. For an infinite horizontal layer of depth d in which the external 
conditions are symmetric about the midlayer level, a spatially uniform (pure 
conduction) state becomes unstable to a spatially periodic, time-independent state of 
straight, parallel, convecting rolls. The existence and stability of these roll solutions 
has been studied in detail by Busse and several colleagues (Busse 1967, 1978, 1981 ; 
Busse & Whitehead 1971, 1974; Clever & Busse 1974, 1978, 1979) over a period of 
twent,y years. The conclusion is that, for a range of Rayleigh numbers R, depending 
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FIGURE I .  Schematic drawings of the Busse balloon at Prandtl numbers (a)  P = 70, ( b )  P = 2.5, (c) 
P = 0.71, (d) P = 0.1. The borders are marked: C (cross-roll), Z (zigzag), SV (skew-varicose), E 
(Eckhaus), 0 (oscillations), K (knot), and denote the various instabilities. M denotes the neutral 
stability curve of the conduction solution. 

on the Prandtl number P, the straight rolls are linearly stable if their wavenumber 
k(R ,Y)  lies in a band, called the Busse balloon. In figure 1 we display this balloon at 
several values of P. The caption gives names to the various instabilities which occur 
a t  the borders. The Busse balloon has been extraordinarily successful both 
qualitatively and quantitatively in predicting the onset of time-dependent behaviour 
for configurations dominated by straight parallel rolls. 

However, in convecting boxes wide enough to hold many rolls (the ratio of a 
typical horizontal dimension L to the depth d is called the aspect ratio and denoted 
by r),  these solutions are usually not reached when convection is initiated 
spontaneously. There are two main and connected reasons for this. First, the 
rotational symmetry of the infinite horizontal layer means that straight parallel rolls 
with different orientations can appear at different locations. Second, these local 
orientations are often chosen by lateral sidewalls, as the rolls tend to align themselves 
so that their axes are everywhere almost normal to the boundary. Because of these 
reasons, the patterns which are attained are usually quite complicated, consisting of 
patches of curved rolls, often almost circular in shape, and defects such as 
disclinations, foci singularities, dislocations and grain boundaries. When the pattern 
is stationary, these pattern singularities or defects are necessary in order to mediate 
between the various roll patches because it is simply impossible to  tile a closed box 
with regions of smooth rolls. When the pattern is evolving, defects, and in particular 
dislocations, are particularly important as mechanisms for adjusting the local 
wavenumber. 

To illustrate these statements we show in figure 2 results from experiments by 
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Heutmaker & Gollub (1987), Croquette, Mory & Schosseler (1983) in cylindrical 
boxes, by Gollub, McCarriar & Steinman (1982) in rectangular ones, and numerical 
experiments by Greenside & Coughran (1986) carried out on the Swift-Hohenberg 
equation. Observe that the patterns (some are equilibrium states; others are 
snapshots of time-dependent states) often contain almost circular patches sur- 
rounding sidewall foci, disclinations (marked DS in figure 2b, c )  which separate 
circular patches, dislocations (marked D in figure 2d, e ,  h) which allow the pattern 
adjust its local wavenumber, and grain boundaries (marked G in figure 2a) attached 
to the sidewalls. What is not obvious from these pictures is the presence of a mean 
drift flow field which is driven by the curvature of the rolls and the variation in 
intensity in the underlying pattern. In  figure 2 ( e ) ,  we have superimposed the mean 
drift field which is produced by that pattern. The mean drift is driven by the pattern 
curvature and in turn affects the pattern by advecting its phase contours. It has 
extremely important consequences and is responsible for turning the Eckhaus 
stability boundary sharply left towards smaller wavenumbers (see figure 1 b,  c ) ,  
where it is called the skew-varicose instability, and in triggering the focus instability 
associated with circular and curved patches. This latter instability, first observed by 
Heutmaker & Gollub (1987), Steinberg, Ahlers & Cannell (1985), Croquette et a.1. 
(1986 b ) ,  and discovered analytically by Newell (1988) and Pocheau (1988) using the 
Cross-Newel1 equations (which we shall shortly discuss) and derived in $3.2 of this 
paper using the correct equations, is not one of the borders of the Busse balloon 
because it is an instability of circular target patterns and not an instability of 
straight parallel rolls. We shall argue that the basic instability mechanism, which is 
that the compression of rolls by mean drift velocity advection overcomes the 
relaxation of the pattern towards a selected wavenumber, may also be important for 
understanding the onset of time dependence a t  low and low to moderate Prandtl 
numbers. 

The goal of this paper is to write down macroscopic equations for the wavevector 
k and a depth-averaged (with appropriate weighting) mean drift velocity field V ,  
both of which quantities vary slowly over the pattern. Except a t  singularities (which 
are points or lines and therefore of zero measure with respect to area), the spatial 
gradients of these fields are of order E = r-l, the inverse aspect ratio, and their time 
derivatives are of order e2 = r-2, the inverse of the horizontal diffusion timescale. 
The form of these equations was first written down by Cross & Newell (1984). They 
used model equations in order to derive the phase diffusion equation (1 .1)  ; the mean 
drift equation was written down by an experienced hand guided by small-amplitude 
theory. It turns out that, whereas the Cross-Newel1 mean drift equation had many 
features that were correct, it had neglected terms that give rise to important 
quantitative differences. Although several of the key ideas were developed in the 
earlier paper, the derivation of both equations for the full Oberbeck-Boussinesq 
model proved to be a daunting task for reasons we shall describe later. The phase 
diffusion and mean drift equations are 
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FIGVEE: 2. Convection patterns observed by Heutmaker & Gollub (1987) in a cylindrical container 
a t  Prandtl numhrr 2 5 .  (a) R = 1.17K,. showing a grain boundary (U). Also note that  the roll axes 
are not perpendicular to the boundary. ( b )  and (c) Two different final stationary states at the same 
parameter values. They display foci singularities and tiischations (US). ( d )  and ( e )  R = 4.84R,; 
sequential snapshots of the formation of a dislocations pair (D). I n  ( b ,  c ,  d ,  e )  the roll axes are 
everywhere almost perpendicwlar to  the boundary. ( f )  and (y) From experiments by Gollub et al. 
(1982) in a rectangular cvntainer. showing the pattern after the horizontal diffusion scale ( f )  and 
after the aspect ratio times the horizontal diffusion timescale (9). (h )  From Croquette et al. (1983). 
( i )  and (j) A numerical simulation by Greenside & Coughran (1986) of the Swift-Hohenberg 
equations. S o t e  their similarity with ( f )  and ( 9 ) .  

where 7' = s't. (X. 1') = s(x .  y). s-' = r: i the unit vector in the vertical direction. and 

* k  
k 

k = UO. k = Ikl. k = -. V = V x $if. (1 3)  

The functions H(k) .  H,(k). B,j(k), 7 ( k ) ,  7 , ( k ) ,  p ( k ) .  a ( k ) .  P ( k )  and A'(k)  arc cxplicitly 
calculated and their graphs as functions of k and the graphs of important functions 



192 A .  C. Newell, T .  Pussot and M .  Souli 

of these quantities are given in figures 9 and 10 in 93. Of these nine functions, only 
two, A 2  and B,, can be combined but, for pedagogic reasons explained later, we 
choose not to do so a t  this time. The coefficient p ( k )  cannot be incorporated because 
it is not quite constant. The equations have the properties that they are rotationally 
invariant and locally Galilean invariant even though, because of the no-slip 
boundary condition, the original boundary value problem is not. They reproduce all 
the long-wave instabilities (zigzag, Eckhaus and skew-varicose) of the Bussc balloon 
exactly. At infinite Prandtl number and in coordinates parallel ( X )  and perpendicular 
( Y )  to the local wavevector k,  ( 1 . 1 )  is the Pomeau-Manneville (1979) phase diffusion 
equation, 

O,-Dll(k)O, , -D,(k)Oyy = 0, (1.4) 

i d  1 
with D,,  = ---(kB), D, = - -B(k) ,  

7 ( k )  dk 7 ( k )  

except that  here the coefficients are exactly calculated and the corresponding 
wavevector k = V,O is not a small perturbation of a fixed wavevector (Pomeau & 
Manneville take the phase 0 to be k,  * X+e@(X,  Y ,  T)). The loci in the (R, I%)-plane 
at which the diffusion coefficients become negative, that  is where D,(k)  = 0 and 
Dll(lc) = 0 are the borders of the zigzag and Eckhaus instabilities respectively. The 
zero of B(k)  and D,(k) ,  which we shall call k,, is the wavenumber selected by curved 
roll textures. At finite Prandtl number, the mean drift field comes into play and the 
zigzag boundary is moved far to the left (see figure 1 b,  c )  whereas, on the right-hand 
boundary of the Busse balloon, for sufficiently large values of the Rayleigh number, 
the Eckhaus instability turns into the skew-varicose one. (Note : Some authors 
choose to denote the ‘effective ’ perpendicular diffusion coefficient which includes 
mean drift effects by D, (the factor - (B /7 ) -pk2vA2)  in (3.17)) but we do not.) The 
calculation of these boundaries is carried out in $3.1. The equations also capture an 
instability, which we call the focus instability, experienced by circular target 
patterns and circular patches surrounding foci singularities. This instability is very 
important at low to moderate Prandtl numbers and serves to initiate time-dependent 
behaviour well within the confines of the Busse balloon. They can, in addition, be 
used to calculate the mean drift fields that are associated with various pattern 
configurations. We suggest that, when appropriately regularized, they also contain 
information about singularities and the nucleation and motion of defects, which we 
believe are suitably defined weak solut,ions. The regularization is achieved by adding 
back into the description an active rather than passive amplitude order parameter. 
We shall illustrate its importance when discussing the focus instability. The equation 
(1.2) would have the form proposed by Cross & Newell if a: and /3 were constant and 
equal and the terms on the right-hand side of (1.2) that  contain B, and Ba were 
absent. This form would be roughly correct if one assumes that the horizontally 
averaged vertical profile of the mean drift velocity field is parabolic (Poiseuille-like), 
but i t  is not. Finally, the lateral sidewall boundary conditions most appropriate (we 
use the term appropriate advisedly ; the extent to which k - fi  is zero has not been 
theoretically derived) to  these fields are that the wavevector k and mean drift 
velocity V fields are parallel to lateral boundaries ; that is, if f i  is the unit outward 
normal to the sidewall, 

(1.6) 
In  certain cases where one applies thermal forcing a t  the lateral boundary, the roll 
axis will be parallel to it and then the appropriate boundary condition would be 

k . f i =  V . f i = O .  

k x A = 0 .  (1 .7)  
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1.2. Experiments 
Over the past two decades, a series of very sophisticated and careful experiments, 
notably by Ahlers & Behringer (1978), Ahlers, Steinberg & Cannell (1985), Steinberg 
et al. (1985), Berg6 & Dubois (1974), Busse & Whitehead (1974), Croquette, Le Gal 
& Pocheau (1986a), Croquette (1989a, b ) ,  Croquette et al. (1983), Gollub et al. (1982), 
Heutmaker & Gollub (1987), Kolodner et al. (1986a, b ) ,  Koschmieder & Pallas (1974), 
Krishnamurti (1970), have given us reliable details about pattern evolution in both 
rectangular and cylindrical boxes with large aspect ratios, covering all ranges of 
Prandtl number, high (P > 7) ,  moderate (1 < P < 7) ,  and low (P < 1) .  The control of 
the parameters in many of these experiments has been such that a given experiment 
can be continued for times up to 50 and in some cases 100 horizontal diffusion times, 
often of the order of a week or more. The experiments in the high-Prandtl-number 
range have reproduced the Busse balloon in circumstances where straight rolls were 
originally forced. They also display no time dependence until very large Rayleigh 
numbers, typically greater than ten times critical, and that behaviour does not occur 
till after the bimodal state, consisting of the original rolls with rolls at 90" 
superimposed, is reached. For uncontrolled initial conditions, the evolution of a 
pattern occurs in two stages. On the horizontal diffusion scale, the pattern consists 
of circular patches surrounding foci singularities which in rectangular boxes often sit 
in the corners (see figure 2f, i ) .  Wavenumber selection is an important part of the 
dynamics on this timescale. This subject has attracted a lot of attention in the 
literature and several different mechanisms that select a preferred wavenumber have 
been proposed. Roll curvature, first suggested by Pomeau & Manneville (1981), is one 
of the principal mechanisms, and these authors calculated the value of k ,  close to 
threshold for the infinite-Prandtl-number case. Later, Cross & Newel1 (1984) showed 
that in the absence of dislocations the functional 

F = - / ( i r B d k 2 ) d X d Y  

acts as a Lyapunov functional in the infinite-Prandtl-number case so that it is 
reasonable to expect the wavenumber in curved patterns to relax to a value as close 
to the zero k,  of B(k)  as the boundary conditions will allow. However, for infinite 
Prandtl number, the selected wavenumber k ,  is a t  the left-hand edge of the Busse 
balloon, the zigzag instability boundary, where the rolls lose their resistance to 
lateral bending. Because of this, the rolls can develop undulations along their axes 
which scale like Fkd (rather than Td = L)  and this means higher-order correction 
terms must be added to (1.1).  The earliest timescale on which the pattern can settle 
down is very long, namely r times the horizontal diffusion time. In rectangular 
geometries i t  can become stationary as in figure Z(g,j) ,  whereas in circular 
geometries it can stay permanently time dependent. This behaviour is consistent 
with the properties of the phase-diffusion equation (in the infinite-Prandtl-number 
limit, the mean drift flow is not generated), and is discussed in the original 
Cross-Newel1 (1984) paper. 

Of more interest to us in this paper is the behaviour a t  moderate and low Prandtl 
numbers because it is in these regimes that the mean drift velocity, which in this 
paper has for the first time been calculated as a functional of the pattern wavevector, 
is most important. Here we shall give a brief account of some of the experimental 
observations, relying principally on the articles of Heutmaker & Gollub (1987), 
Steinberg et al. (1985) and Croquette (1989a, b)  who investigated the behaviour a t  
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Prandtl numbers 2.5, 6.1 and 0.71 respectively. Heutmaker & Gollub (1987) 
investigated convection in water in a cylindrical dish of depth d = 3 mm, diameter 
L = 41.7 mm and aspect ratio r = L / d  of about 14. They found three regimes of 
behaviour. In the first R < 1.2R,, they observed, somewhat surprisingly, that the 
pattern remains time dependent and aperiodic. This feature was also noted earlier by 
Ahlers & Behringer (1978) in experiments in liquid helium (P  in the range 0.7 to 3) 
and in very large-aspect-ratio boxes and by Ahlers et al. (1985) working with fluids 
of Prandtl number 5.7. After several horizontal diffusion timescalw, the patterns 
simplify and appear to contain weakly circular roll patches about sidewall foci which 
are connected to the other part of the lateral walls by grain boundaries. A typical 
state is shown in figure 2(a).  Notice that for these low values of (R-Re)/&,, the roll 
axes and the boundary normal are not parallel and a significant angle can occur 
between these two directions. An analysis of the wavenumber band in the pattern 
shows that a significant portion of the spectrum lies to the left (that is the small- 
wavenumber side) of the zigzag and cross-roll instability boundaries in the Busse 
balloon and therefore the appearance of two patches of rolls, roughly at right angles 
and separated by a grain boundary is not surprising. The shape of thc box would 
seem to have some influence. I n  a square cell of the same aspect ratio, some of the 
runs appear to stabilize after 100 horizontal diffusion times. 

In the second regime, 1.2R, < R < 4.5R,, the pattern will always stabilize but the 
final structure may not be unique. Again, in both the rectangular and circular 
geometries, the textures are dominated by circular patches which (usually) surround 
sidewall foci. The rolls are more bent and the roll axes are almost everywhere 
perpendicular to the boundaries. After transients, there would appear to be a 
minimal number of defects and disclinations which mediate and separate the 
different circular patches. The pattern takes several horizontal diffusion times to 
become time independent. The band of wavenumbers is almost wholly contained in 
the stable portion of the Busse balloon between the zigzag and skew-varicose 
instability boundaries. Figures 2(b) and 2(c) are stable patterns. We add onc extra 
observation here from a numerical experiment in a rectangular cell ( 1  1.5 x 16) of 
Arter & Newell (1988) who found that the finite box length (which limits the range 
of perturbation wavevectors) tends to push the skew-varicose boundary to slightly 
larger wavenumbers. Finally, in the third regime, R > 4.5&,, the pattern remains 
time dependent via repetitive nucleation of dislocation pairs (see figures 2 d  and 2e) 
owing to what appears to be extra wavenumber production a t  sidewall foci. Although 
the dynamics is not periodic, it has a quasi-period of about 2 0 4 0  vertical diffusion 
times. The distribution of pattern wavenumbers lies across the skew-varicose 
instability boundary, namely on the large-wavenumber side of the Busse balloon. 

In a pair of articles just published, Croquette (1989a, b )  presents an overview of 
work with colleagues on low-Prandtl-number convection in cylindrical and 
rectangular boxes. Part 2 is based on the earlier work of Pocheau, Croquette & Le Gal 
(1985) and Croquette & Pocheau (1984). In  the first part of this work they validate 
many of the boundaries of the Busse balloon by arranging that the shorter sidewalls 
are heated so as to negate the usual boundary conditions on these sides and cause the 
rolls to be almost straight and parallel to this side. Kolodner et al. (1986a, h )  have 
also achieved experimental results consistent with predictions of the Busse balloon. 
However, as Croquette emphasizes strongly, significantly different behaviour is 
observed when the convection is allowed to begin spontaneously. He calls the 
resulting patterns ‘natural patterns ’. Their experiment investigates the convection 
patterns in argon gas a t  a Prandtl number of 0.7 1 in a cylindrical box of aspect ratios 
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FIGURE 3. Taken from Croquette et al. (1986a) from an experiment with argon at P = 0.71 for an 
aspect ratio of 7.5. (a )  A stationary state a t  R = 1.05R,. ( b )  and (c) Approximately R = 1.13RC, 
showing the patterns being compressed by the roll axes becoming perpendicular to the boundary 
( b )  and the resulting nucleation of a dislocation pair (c). 

7.6 and 20. I n  the former, the pattern remains stationary until 1.125Rc a t  which 
point, according to Croquette (1989a, b ) ,  time dependence sets in in the following 
manner. Very close to onset, the rolls are almost parallel except for two weakly 
circular patches about two foci singularities on the sidewalls (see figure 3a). As the 
Rayleigh number increases past 1.13Rc, the boundary condition that the roll axes are 
parallel to the sidewall normal becomes more important and the inner rolls 
surrounding each focus become more curved. As a result, the rolls near the centre of 
the container are compressed (see figure 3 b )  so that their wavenumber crosses the 
skew-varicose boundary (see figure 1 c).  A defect pair is quickly nucleated ; each 
dislocation climbs swiftly to the sidewall and then glides slowly towards, and 
eventually disappears in one of the two foci. The timescales for the nucleation and 
climb portions of this process are a few vertical diffusion times; the gliding takes of 
the order of the horizontal diffusion time. The surprising thing is that  the relief of the 
stress on the pattern by the action of the dislocations in removing a roll pair does not 
lead to an equilibrium state. Instead, sidewall foci singularities nucleate new rolls, 
leading to the same pattern as the original one and the scenario consisting of roll 
compression, defect nucleation, climb and glide is repeated in an almost periodic 
cycle. The time dependence in range 1.13Rc < R < l.16Rc appears to be well 
described by this mechanism, although in this range there are windows of almost 
periodic, stationary and chaotic behaviours. Periods can be very long and extend up 
to 100 horizontal diffusion timescales. The effect of increasing the aspect ratio is 
small. At higher Rayleigh numbers R > 2Rc, the patterns in argon become very 
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FIQIJRE 4. (a ,  b,  c )  From Croquette (1989) a t  P = 0.71, R = 1.185RC, r= 20, showing the off-centre 
shift of the umbilicus of a target pattern and the compression of the roll pattern on one side (a ) ,  
followed by the nucleation of a dislocation pair (b )  which glide one at a time towards and vanish 
in the umbilicus, leaving a target pattern with one roll pair removed. The umbilicus quickly 
nucleates new rolls so that the original pattern is reproduced ( c ) .  The process repeats. ( d ,  e , f )  From 
Steinberg et al. (1985) at P = 6.1, r = 6 and at several Rayleigh numbers: (d) a stable 3$ roll state 
at R = 2.5RC; (e)  a stable 3 roll state at  R = 3Rc, and (f) its distortion a t  R = 4Rc. States (d ) ,  ( e )  
and (f) are in equilibrium. 

complicated, displaying spatially chaotic patterns consisting of many defects which 
create areas where the local wavenumber is too small, and this would appear to lead 
to the initiation of local cross-roll instabilities or bridges. On the other hand, there 
does not seem to be any analogue in the argon experiments of the chaotic behaviour 
observed by Heutmaker & Gollub (1987) and Ahlers et al. (1985) for R < 1.2RC. 

A study of the behaviour of circular target patterns was made by Steinberg et al. 
(1985) using aspect ratios of between 6 and 7 and a Prandtl number P = 6.1, and by 
Croquette (1989a, b)  using a Prandtl number of0.71 for aspect ratios of both 7 and 
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F'raum 5 .  The neutral stability curve and the locus of stable wavevectors. 

20. They used sidewall forcing to initiate the patterns, although as pointed out by 
Steinberg et al., it was not necessary to sustain the forcing in order to maintain the 
circular target patterns. The principal features observed by Steinberg et al. were that, 
as the Rayleigh number increased past a certain value, a perfectly circular target 
pattern (figure 4e)  would break its symmetry and reach a new stationary pattern in 
which its umbilicus (the focus singularity) was shifted off-centre (figure 4 f ) .  A further 
increase in Rayleigh number could bring about a transition from a pattern 
containing 3 roll pairs as in figure 4 ( d )  to 24 roll pairs. At moderate Rayleigh 
numbers, they found that all these patterns remained stationary. They did notice, 
however, that the transitions from 3;, to 3, to 24 roll pairs were hysteretic, namely 
the change from three to two and a half did not occur a t  the same value of the 
Rayleigh number as this parameter was increased as the change from two and a half 
to three as the Rayleigh number was decreased. Croquette, on the other hand, 
working a t  a much lower Prandtl number, observed that the target patterns, while 
displaying the same symmetry-breaking behaviour, could also sustain a continuing 
time dependence owing to the repetition of a cycle consisting of a symmetry-breaking 
bifurcation which compressed the rolls on the side to which the umbilicus moved, 
followed by the nucleation of a dislocation pair which eventually disappeared by first 
climbing to the sidewall and then gliding to the focus, followed by the nucleation of 
new rolls a t  the focus which brings the pattern back to the original starting point of 
the cycle. 

1.3. Theory 
1.3.1. Small-amplitude convection 

Theoretical approaches to describe convection in large boxes fall into two 
categories. Near threshold, one takes advantage of the small convection amplitudes 
and expands each of the field variables w(x, y ,  x ,  t )  in an asymptotic expansion in an 
amplitude parameter 6 = ((R -R,)/R,)i ,  

w(x, y ,  2, t )  = €W0 + €2W1 + E3W2 + . . . . (1.8) 

The shape of w,, is determined by the linear stability analysis of the conduction 
solution which yields two important graphs, the neutral stability curve R us. k 
(independent of Prandtl number) separating regions of exponentially growing from 
decaying solutions, shown in figure 5 ( a ) ,  and the critical circle of wavevectors k at 
which convection first takes place, shown in figure 5 ( b ) .  Rotational symmetry gives 
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rise to rotational degeneracy ; the stability analysis only determines the modulus k 
of the wavevector k. The shape of wo can be taken to be a linear combination of 
modes : 

w o =  CAj$(z)expik j .x+(*) ,  (1.9) 
j 

where ki lies either on the critical circle or in an annulus of width e surrounding it and 
&z) ,  which depends on k ,  is the vertical structure of the neutrally stable mode. In 
order to include the temporal evolution of the amplitudes of the motion, we allow A j  
to be a slowly varying function of time T = e2t which changes at a rate proportional 
to (R-R,)/R,, the growth rate of the instability. For a given value of e2, equations 
for the amplitudes are obtained as solvability conditions which must be applied 
in order to compute the iterates w,, w2, .  . .in the expansion (1.8). For lkjl = k,, 
j = 1, . . . , N ,  these equations read 

(1.10) 

The linear growth term in which p is proportional to (R-R,) /e2 captures the linear 
instability. The quadratic term arises when the symmetry of the vertical structure 
$ ( x )  about the midplane is weakly broken. This can occur through a variety of non- 
Boussinesq effects such as weak quadratic variation of density with temperature and 
dependence of viscosity and other medium parameters on temperature. Math- 
ematically, the term appears because a quadratic product like $ ( z )  $'(z) exp 
( -  i(k, + k,) - x) has a non-zero projection in another basis mode $(z )  exp (ikj . x) 
when $ ( z )  $ ' ( z ) ,  because of the slight asymmetry, has a non-zero projection on $ ( z )  
and kj+k,+kn = 0, that is when the three wavevectors are 120" apart on the 
critical circle. The cubic terms are always present and arise from the projection of 
C$~((Z) exp [i(k,+ k, - k,) - x], 1 = 1,. . . , N  onto $ ( x )  exp (ikj - x). These amplitude 
equations of Stuart-Watson-Landau (1960) type can be used to predict the existence 
and stability of the various planforms (rolls, N = 1; rectangles, N = 2 and 
k, k, = 0; hexagons, N = 3 and k,+k,+k, = 0). These amplitude equations were 
used by Malkus & Veronis (1958), Schulter, Lortz & Busse (1965), Palm (1975), and 
Segel & Stuart (1962), to compute various measures of the convection fields such as 
heat Aux, and to  describe subcritical instabilities (which can arise because of the 
quadratic terms) of hexagonal form and the competition between the various 
configurations. For situations in which quadratic terms are absent, the roll solution 
(N = 1) is the only stable configuration. 

A new description which automatically includes all the sidebands of a particular 
mode was suggested by Newell & Whitehead (1969) and Segel(1969). The idea is very 
simple. All the modes about the wavevector (k,, 0) contained in the rectangle in figure 
5 ( b )  and in the band AB in figure 5 ( a )  are automatically included if we let 

(1.11) 

The solvability condition at order e3 gives a partial differential equation for the 
envelope A ( X ,  Y ,  T), which, in rescaled form, is 

wo = A(X = EX, Y = E$, T = e2t) $ ( z )  exp (ik, x) + (*), 

A = A-A2A*.  (1.12) 

I n  deriving ( l . l Z ) ,  one assumes that the field consists of long-wavelength modulations 
of almost straight parallel rolls and that vertical asymmetries are absent. This 
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envelope equation has been used extensively. It automatically contains two of the 
long-wavelength instabilities of simple roll solutions 

A = (1-K2)ieiKX (1.13) 

found earlier by Busse (1967) (the zigzag instability which occurs if K < 0) and 
Eckhaus (1965) (the Eckhaus instability which occurs if K 2  > i). The phase diffusion 
equation (1.4) is also a limit of (1.12) and a little calculation will show that if A is 
written as (1 -K2)iexp i(KX+ $ ( X ,  Y, T)), D,, and D, are proportional to 1 - 3K2 and 
K respectively. However Newel1 & Whitehead and Segel overlooked an effect which, 
although not important a t  small values of (R -R, ) /R,  becomes increasingly 
important as the Rayleigh number increases. (It is important at  small values if 
stress-free rather than zero tangential velocity boundary conditions are applied a t  
the horizontal boundaries.) This effect, discovered by Siggia & Zippelius (1981 a ,  b ) ,  
involves mean currents which are driven by slow gradients in the intensity AA* and 
'along the roll' current density -i/Sk,(A* aA/aY-A i3A*/aY). The mean currents, 
computed from the vertical vorticity L? = (V x U) - 3, 

in turn advect the phase contours by the addition of ik, UA, U = (U,  &V) to the left- 
hand side of (1.12). In  the case of rigid-rigid boundary conditions, the dominant term 
on the left-hand side is a2L?/ax2 and thus L? and U are of order e and therefore 
ignorable. For free-free boundary conditions, there is no boundary constraint on $2, 
the dominant term on the left-hand side of (1.14) is 8 i32L?/i3P and then L? and U are 
order one. In this case, one also should include O(d)  correction terms to the 
Siggia-Zippelius expansion in order to bring the stability boundaries into exact 
agreement with the results obtained by Bolton, Busse & Clever (1986). This last step 
was carried out by Bernoff (1989). 

1.3.2. Finite-amplitude theories 

One of the main results of the Schulter et al. (1965) small-amplitude theory is that 
among all possible planforms only the two-dimensional configuration consisting of 
straight, parallel rolls is stable in the Boussinesq approximation. However, as the 
Rayleigh number is increased, it is clear that the band of wavenumbers which give 
rise to roll solutions also increases. In a series of fundamental papers spanning a time 
period of twenty years, and in collaboration with several colleagues, Busse (Busse 
1967, 1978, 1981; Busse & Whitehead 1971, 1974; Clever & Busse 1974, 1978, 1979) 
has provided a comprehensive analysis of the stability of finite-amplitude rolls for 
almost all values of the Rayleigh and Prandtl numbers and a catalogue of the various 
instabilities of straight parallel rolls which can occur. He constructed the finite- 
amplitude roll solutions by expanding the fields in Galerkin series (see $ 2  of this 
paper) and obtained nonlinear algebraic equations for their coefficients. He then 
performed a linear stability analysis of these solutions and in each case identified the 
ends of the band of stable wavenumbers and the mode of instability that occurred 
there. The stability regions are shown schematically in figure 1 for several values, 
high, moderate and low, of the Prandtl number. Each stability region is called a Busse 
balloon. The superposition of these regions in the Rayleigh number, wavenumber, 
Prandtl number space could be called the Busse windsock. Although the Busse 
balloon only outlines the stability region for a field of straight parallel rolls in an 
infinite horizontal geometry, it has proven to be extremely valuable in understanding 
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many of the qualitative features seen in convection in finite but large boxes. 
However, since the preponderance of observational evidence suggested that 
convection patterns are only straight rolls locally and are much more complicated 
when viewed globally, it  was necessary to build a theory appropriate for curved roll 
patterns and this step was taken by Cross & Newell (1984). 

The fundamental idea of the Cross-Newel1 approach followed naturally from the 
work of Whitham (1974) on almost periodic wavetrains in nonlinear dispersive 
systems. It was also used by Howard & Kopell (1977) in their investigations of spiral 
wave patterns in reaction-diffusion systems. It is different from the work of Pomeau 
& Manneville (1979) in the fact that the total wavenumber and not, just a small 
perturbation to i t  is allowed to change significantly. Indeed, the Pomeau-Mannevillc 
equation is the Newell-Whitehead-Segel equation (1.12) obtained by taking A = A ,  
exp (iKx+i@) in (1.12) and assuming that the amplitude A ,  is slaved to the phase 
gradient, i.e. A: = 1-K2. Then, 

1 -3K2 K 
@T--@xx--@yy = 0. 

1-K2 kc 
Nevertheless, i t  should be emphasized that whereas the equation that Pomeau & 
Manneville derived had this limitation, they understood conceptually the role of a 
phase diffusion equation in describing finite-amplitude patterns in rotat(iona1ly 
invariant systems. They also derived the phase diffusion equation for the 
perturbation to  a patch of low-amplitude circular rolls and used i t  to  show how a 
wavenumber would be selected. Their approach was continued to the finite- 
amplitude regime by Buell & Caton (1986), who in a very non-trivial piece of work, 
calculated what we call k,. The Cross-Newel1 work, however, was the first to write 
down rotationally invariant phase diffusion and mean drift equations for a finite- 
amplitude system. We now describe the basic idea. 

The basic premise of this theory is that, except a t  singularities, the field locally 
consists of spatially periodic, straight parallel rolls whose wavevector k gives the 
local wavenumber and roll direction. The wavevector k changes slowly, that is over 
distances compared with the box size L ,  whereas the fields themselves change 
significantly over a roll wavelength, that is on distances proportional to d,  the layer 
depth. The small parameter E in this theory is not ((R-R,)/R,)i but rather r-l, the 
inverse aspect ratio. We distinguish between two regimes of E .  For E sufficiently large, 
the allowed set of wavenumbers will populate the nonlinear stability region (the 
Busse balloon) densely. From figure 1 we see that this width is about 1.5 and, if we 
define dense to mean that this band is revolved by ten k values, then 

- 0.05. 
d 2x Ak - 0.15 
L k , L  k ,  3.1 

e = - = - = - - - -  

We refer to an E < 0.05 as a large-aspect-ratio situation (at  least twenty rolls in the 
container) and 0.05 < E < 0.2,0.3 as a moderate-aspect-ratio situation. Alt,hough the 
patterns, when viewed on the global scale, are far from being straight rolls, the fact 
that they have this structure locally allows us to  build solutions that are slow 
modulations of the finite-amplitude solutions of Busse. Each field variable w is 
approximated as a function of depth z and a phase variable 8, 

=f(O,z;A), (1.15) 

which, if the rolls were straight and parallel, would be an exact solution with 
8 = k . x, k constant. The imposition of 27c periodicity on f gives a relation between 
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k and A ,  a measure of the field amplitude, and the other parameters such as the 
Rayleigh and Prandtl numbers, R and P respectively, 

O(L,A;R,P) = 0. (1.16) 

When k is slowly varying, the phase variable 0 is written as 

(1.17) 

where X = ex, Y = ey, T = €9. Also (1.15) is no longer an exact solution but only an 
approximation to the field w(x(x ,  y),  z ,  t ) ,  which we now write 

w(x , z , t )  = f ( e , z ; A ) + E W 1 + E 2 W 2 +  .... (1.18) 

The iterates wl,  w2, . . . are calculated by linearizing the governing equations about the 
fully nonlinear solution f(e, z;A). The solvability conditions for the iterates give us 
equations for the slowly varying wavevector k, called the phase diffusion equation, 
and a depth-averaged mean drift velocity field V. The amplitude A will turn out to 
satisfy the same algebraic equation (1.16) as it did a t  leading order but there will be 
higher-order corrections which depend on gradients of the wavevector field. These 
corrections only become important close to onset, that is for values of R close to R,, 
or a t  isolated singularities in the field where the amplitude is no longer slaved to k: 
and approaches zero. 

The solvability conditions arise because the Oberbeck-Boussinesq equations, 
when linearized about the nonlinear solution f(0, z ;  A ) ,  have non-trivial solutions. 
The first of these corresponds to translational invariance of the phase; if f(0, z ;  A) is 
a solution, so is f ( 6 + 6 , , z ; A )  and thus fe satisfies the linearized homogeneous 
equation. At small amplitudes, the amplitude A is also a free parameter, it  is not 
restricted by (1.16), and therefore there is a continuous one-parameter family of 
solutions whose ' symmetry ' i3f /aA also satisfies the linearized homogeneous 
equations. The presence of a non-trivial solution of the linearized boundary-value 
problem means that the adjoint problem will also have a non-trivial solution and 
that the right-hand sides of the equations for w,, w2, . . . etc., which depend on the slow 
time and space derivatives of k and A ,  will have to satisfy the Fredholm alternative 
theorem. The translational invariance of the phase gives rise to the phase diffusion 
equation. At small amplitudes, the one-parameter family of amplitude-free solutions 
gives rise to another constraint, a partial differential equation for the amplitude A. 
When written together as a complex amplitude A ,  e.g. AexpiO-tcomplex A ,  these 
equations become the Newell-Whitehead-Segel equations (1.12). However, a t  larger 
amplitudes, the second symmetry is absent and the equation for amplitudes is 
replaced by the algebraic equation ( l . l 6 ) ,  a result of demanding spatial periodicity 
of the finite-amplitude solution. Away from onset, therefore, amplitudes are slaved 
to phase gradients (A is an algebraic function of k), and only phase diffusion matters. 
Near defect singularities, this slaving no longer occurs, and, a t  the defect, the 
amplitude attains a zero value. These points, of zero measure with respect to area, 
must be handled separately, although we shall suggest that certain weak solutions of 
the phase diffusion equation may still apply. 

There is also another symmetry, which is simply that the pressure field of the 
nonlinear solution contains a free constant, independent of the depth and horizontal 
coordinates. The solvability condition arising from this symmetry says that the 
divergence of the velocity field averaged over the depth and the horizontal period 
must be zero. However, as we have already indicated, the quadratic nonlinearities in 
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the momentum equation can give rise to Reynolds stresses which drive large-scale 
mean flows whose average over 0 and z does not, necessarily satisfy continuity. I n  
order to ensure that they do, a slowly varying pressure field must be int>rodured, 
namely the constant pressure in the nonlinear solution must be taken as a slowly 
varying function of time and the horizontal coordinates. 

The major difficulty in deriving the phase diffusion (1.1) and mean drift flow 
equations (1.2) from the Oberbeck-Boussinesq equation is that the latter cyuation 
first arises as a non-trivial solvability condition a t  order e2 whereas the former is a 
solvability condition a t  order E .  Further, the mean velocity field, which is order E and 
gencrated as part of wl, depends also on the fluctuating (8-dependtmt) part of the 
solution wl.  Therefore we must apply the solvability condition at  order c t,o obt,ain 
the phase diffusion equation, and then solve t8he remaining part of this equation for 
w1 before we can get to the solvability condition a t  order 2. In practice this is very 
difficult because the coefficients of the equations as functions of wavenumber k: must 
be determined numerically (although their structure in terms of the direction of the 
vector k can be found analytically) and therefore the terms remaining on the right,- 
hand side of the equation for w1 do not quite satisfy the Fredholm alt,ernat,ive 
theorem, which is the solvability condition for this equation. One therefore needs a 
robust method of solution, a means of inverting the non-homogeneous equation for 
w1 that is relatively insensitive to these errors. It turns out that there is such a 
scheme, based on the singular-valued decomposition of the singular matrix which is 
the representation of the differential operator acting on w1 in some chosen basis. 
Using this, we are able to solve for the perturbed field w1 very accurately and then 
use this information to construct the mean drift velocity equation as the solvability 
equation of order c2. What turns out to be surprising is that the vertical structure of 
the horizontally averaged (over 8) horizontal velocity field is quite complicated and, 
especially a t  low Prandtl numbers, depends crucially on the pattern structure in 
addition to the slowly varying pressure field which is created in order to assure that 
mass conservation is satisfied. At moderate to  large Prandtl numbers, t,his field is 
approximately parabolic, having the shape that one expects from the presence of a 
depth-independent, slowly varying pressure gradient. Indeed if one ignores the 
vertical Reynolds stresses, the terms (a/&) uw, (a/&) m in  the horizontally averaged 
momentum equations (u, v, w are the velocity components, overbar denotes average 
over O ) ,  the mean drift profile would have a Poiseuille-like shape. However, a t  
moderate ( P  - 2.5)  to low Prandtl numbers, the vertical Reynolds stresses are as 
important as the slowly varying horizontal Reynolds stresses, 

a a a -  a 
- a2 i- -m, - uv i- -3 ax a Y  ax a Y  

and greatly change the vertical profile of the mean drift flow 

1.4. The outline of the paper 

In $2, we give the mathematical formulation and derivation of the phase and mean 
drift equations. We use two formulations, the momentum equations which include 
the pressure and the vorticity equations in which the pressure is eliminated. The 
latter calculation is written out explicitly in Appendix A. The reason for emphasizing 
the former is that the slowly varying, depth-independent, components of pressure 
plays a very important role in controlling the mean drift velocity field and ensuring 
mass conservation over large scales. In order to make the account as readable as 
possible, details of the consistency of different approaches and the numerical 
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procedures are postponed to Appcndices B and C. Section 3 discusses the results. In 
93.1, we reproduce the long-wave stability borders of the Busse balloon and integrate 
a pattern undergoing the skew-varicose instability to a finite-amplitude state. In 
$3.2,  we discuss circular roll patterns and introduce the focus instability. A 
combination of this instability and the skew-varicose instability provides a 
mechanism for wavenumber adjustment and may also be important in inducing time 
dependence. We discuss scenarios for the onset of time dependence in $3.3.  In the 
Conclusion, we discuss how to introduce the amplitude as an active order parameter 
near singularities and review some open problems. 

2. Mathematical formulation and derivation of the phase diffusion and 
mean drift equations 

2.1. Governing equations 

The governing equations are a combination of the Navier-Stokes and heat equations 
in which one assumes that density changes are linearly proportional to temperature 
changes and ignores all density fluctuations except where they appear in the 
buoyancy force. This is called the Oberbeck-Boussinesq approximation. Length is 
scaled with the depth d of the layer, time by d 2 / K  where K is the thermometric 
conductivity, velocity by K / d  and temperature by v ~ / a g d ~  where v is the fluid 
viscosity, g gravity and a the coefficient of cubic expansion. The temperature 
difference across the layer is AT which in non-dimensional units is called the 
Rayleigh number 

The other parameter that  appears in the equation is the Prandtl number P, the ratio 
of viscous to thermal diffusivity, which we write as u-'. For values of R less than 
1708, the conductive state 

u C = O ,  T c = - R z + T 0 ,  - dpc = - Tc(z), 
dz 

consisting ofa  zero velocity field and a linear temperature gradient, is stable. In  non- 
dimensional form, the equations for the velocity field u and the fluctuation of the 
temperature T and pressure p fields about the conduction solutions are 

= - V p + T 2 + V 2 u ,  

i3T 
---+US V T - R W  = V'T, (2.4) at 

v . u = 0 ,  (2 .5)  
where the velocity field u has components ( u ,  v,  w). We shall also find i t  useful to work 
with the vorticity equation in which the pressure force is eliminated, 

(U * V)O-(W - V ) U  = V T X  2+V2w,  (2.6)  

with w = V x u = (c,  7, c). 
The boundary conditions are 

u = T = O  a t  z = + 1  - 2 ,  (2 .7)  
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reflecting the fact that the horizontal boundaries are rigid and isothermal. For the 
approximation in which we consider an infinite horizontal layer of fluid, we simply 
ask that both fields are bounded as x, y -+ co . 

2.2. Steady roll solutions 
We have already indicated that the starting point for the theory is a field of straight 
parallel rolls, periodic in the horizontal direction with wavevector k and wavelength 
h = 2x/k, k = IkJ. There is no loss of generality in taking k to be (k, 0), that is the roll 
axes are parallel to  the y-direction. I n  constructing these solutions by a Galerkin 
scheme, we follow Busse (1967), and write 

(2.9) 

(2.10) 

(2.11) 

where p ,  is a free constant. The summations in (2.8)-(2.11) are over 1 < n < N ,  
-M < m < M .  The argument 0 in the exponential is k - x = kx since we have taken 
k = (k,  0). The functions which carry the vertical structure of the velocity fields are 

~ eigenfunctions of the operator which arises in investigating 
the conductive state. They are given by the formulae (see 

. ,  
approximations of the 
the linear stability of 
Chandrasekhar 1961) 

sinh p, sin p, z 

’,(’) = sinh &un sin ip,, 

cosh A,  z cos h, z 
cash $An cos ah, 

, n even, -~ 

, nodd,  -- - - (2.12) 

with p,, A, the positive roots of coth + = cot& and tanh $A = tanah respectively, 
The vertical structure of the temperature field and the pressure field are written in 
the bases 

f,(z) = sin(nx(z+i)), h,(z) = cos(nn(z+$)). (2.13) 

Reality and symmetry about the planes z = 0, x = 0 require urn, to be pure 
imaginary and w,,, T,,, p, ,  to be real. We may write u,, = i U,,, with 
U-,, = Umn and then, from continuity (2.5), w,, = kmU,,. The vorticity o of the 
basic roll pattern is (O,y, 0) with 

y = z i U,, eim8(g;(z) - k2m2g,(z)). 
m, 12 

(2.14) 

Substituting (2.8)-(2.11), (2.14) into (2.3), (2.4), (2.5) and (2.6) will give us a system 
of nonlinear algebraic equations for the coefficients Urn,, T,, and p,,  obtained by 
projecting the horizontal momentum, the vertical momentum, and heat equations 
onto the basis functions eime g’,(z), eime g,(z) and eirn8jn(z) respectively. These 
equations admit solutions for which all coefficients whose indices m and n sum to an 
odd number are zero, and these are the finite-amplitude roll solutions of interest. The 
choice of basis functions (h,  = cos nn(z + t ) }  for the pressure field proves to be better 
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than { g i ( z ) }  which, at first glance at the horizontal momentum equation, might 
appear more natural. The reason for this is that the pressure field is not constrained 
to be zero a t  the boundaries and using a basis which forces this only leads to a Gibbs- 
like behaviour near z = *+. 

A Newton's method is used to obtain the solution of the system of nonlinear 
algebraic equations. We found it convenient to obtain a first approximation to the 
solution by solving for the coefficients iteratively in terms of the amplitude A of the 
lowest mode gl(z)eu. Convergence was tested by checking the value of the Nusselt 
number and comparing the results with those of Clever & Busse (1974, 1979). In  this 
way, we obtain a set of solutions that depend on the parameters R, v and k .  Since 
it is important to know the fields and many of their global integrals, such as the heat 
flux, as a function of continuous k ,  we first solved the system of nonlinear algebraic 
equations for a discrete set of values spanning the interval of interest (determined by 
the marginal stability of the conduction solution) and then interpolated the fields 
using cubic spline polynomials so as to be able to compute their k-derivatives. It is 
important to stress that the solution of the system of nonlinear algebraic equations 
gives us a relation between R, u, k and some measure A (e.g. square root of heat flux) 
of the solution amplitude. 

The finite-amplitude roll solution has two free parameters: 8,, an arbitrary 
translation of phase ; and p,, the constant pressure. Each gives rise to a symmetry in 
the sense that the derivative of the finite-amplitude solution with respect to either 
8,, or p ,  is a solution of the linear homogeneous equation obtained by perturbing the 
system about the finite-amplitude roll solution. 

2.3. Modulated roll solution 
We next look for modulated roll solutions by seeking approximate solutions for each 
of the dependent variables u = (u, T , p )  in the form 

where X = EX, Y = E Y ,  T = e2t 

(2.15) 

(2.16) 

and E, 0 < B 4 1, is the inverse aspect ratio f-' = d/L,  the horizontal scale over 
which we expect the pattern wavevector 

k = V,8 = V,@ (2.17) 

to change. We also allow the hitherto constant pressure field p s  to depend on X ,  Y 
and T. The relevant timescale will be ( l/e2) d 2 / K  = L'/K, the horizontal diffusion 
scale. Because of the slow modulation, the expression (2.15) withfgiven by the 
steady roll state of $2.2 is no longer an exact solution of the Oberbeck-Boussinesq 
equations. We therefore seek solutions in the form of an asymptotic expansion in E ,  

v = V , + € V ,  +€%, + . . . , 
where 

as a function of 8 and z is exactly the steady parallel roll state. However, 

(2.18) 

+€- -  kl-+€- v,, 
avo - ( :8 A) avo - av,ae 

ax a m x  ax 
_ _ - _  
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where k, is the x-component of the slowly varying wavevector k .  Therefore, when 
acting on a function of 8 ,  z ,  X = ( X ,  Y ) ,  T ,  

where 

a a  
aZ aZ’ -+- I 

I a 
ae V,+k-++VX, k = ( k l , k z ) ,  

a a a - --f EOT - + €2 - . 
at a6 aT’ 

D == 2k .  Vx+Vx.  k .  

(2.19) 

(2.20) 

Our goal is to choose slow dependence of the wavevector k ( X , Y , T )  and pressure 
p,(X,  Y ,  T )  (or equivalently, the mean drift horizontal velocity field which it drives) 
fields in order to keep (2.18) a uniform asymptotic expansion, i.e. 

m 
v-  E’V~ = o(em) ,  for all m,X, Y ,  T .  I 1-0 I 

The perturbation equations for ul, v,, wl, q and p ,  are 

(k2&+$) u1 -2ak, -u, a u1 - a k 2  - a (u, o1 +u, v,) - (T- a (uo w1 + u1 wo) -k, -2 aP 
ae ae aZ ae 

= a @ T ~ - D ~ + ( T - u ; + a - u  au au a a v +L+S, aP aP (2.21) 
ae ae ax ay o 0 ax ax 

(k2$+&) v1 - ak ,  3 a (uo v1 + u1 vo) - 2(Tk2-v0 a v1 - a% a (0, w1 +v, wo) - k 2  2 aP 
ae ae 

= a@,-- avo D A+ av  U - U ~  a v0 + (T -v: a + a2J 2 +A aP (2.22) 
ae ae ax ay ay ay’ 

a a a aP 
ae a2 a2 

(kZ$+&) w, - 4 3 (uo w1 + u, w,) -ah2  - (vo w1 +v, wo) - 2a-  wo w1 + q -2 

aw, aw, a a 
ae ae ax ay O 

= u@~--- -D-+u-u~w~+c-v  w (2.23) 

a a a @$+$) q -k,’aH (uo q +ul T,) - k 2 -  ae (vo q +v, T,) -- a2 (w,  q + w ,  T,) +Rw,  

aT0 aTo a a 
ae ae ax ay 

= @ T - - D - + ~ - ~ o T , + ~ - ~  T (2.24) 

a a awl - au, avo 
k,-u1+k2-v1+- - ---- ae ae aZ ax a y ’  

(2.25) 

(2.26) 
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For reasons that we  are about to discuss we include both the order e and e2 
contributions in the continuity equation. 

We seek solutions vi = (uj, vj, wj, q , p i ) ,  j = 1 , 2 , .  . . to these equations which are 
periodic in 8 and satisfy the no-slip ui = 0 and isothermal q = 0 boundary conditions 
on z = f i. The presence of the free parameter 8, in the phase means that there exists 
a non-trivial solution avo/a8 to the homogeneous equations obtained by ignoring the 
right-hand sides of (2.21)-(2.25). This means that in order for (2.21)-(2.25) to  have 
a solution, the right-hand sides must satisfy a certain solvability or compatibility 
condition. In  order to find this condition, we are obliged to solve the homogeneous 
adjoint boundary-value problem to (2.21)-(2.25) (we write down its form in the next 
subsection). This condition becomes the phase diffusion equation and it describes 
how the phase O(X,  Y ,  5") and its gradient, the wavevector k(X, Y ,  T), evolve under 
the combined influences of phase diffusion and slowly varying mean drift fields. The 
mean drift field arises because there is a second solvability condition (we checked 
numerically that there are only two) which results from the presence of the arbitrary 
parameter p ,  and corresponds to mass conservation. It is easy to see that the almost 
trivial vector v = (u  = v = w = T = 0 , p  = 1)  satisfies the homogeneous equations 
and boundary conditions and also those of the adjoint problem. Therefore the 
solvability condition arising from this solution is obtained by multiplying 
(2.21)-(2.25) by 0, 0, 0, 0 and 1 and averaging over 0 and z .  It is clear that this 
condition is simply mass conservation. At order e, namely in (2.25), i t  gives a trivial 
result as averaging u, and vo over 0 and z automatically gives zero. However, at order 
2, the condition is not trivial because the perturbed fields u, and vl pick up non- 
periodic components due to the slow horizontal Reynolds stresses 

a a a a 
ax ay ax ay 

u - ut + u - uo vo and u - uo v, + u - vi 
in (2.21), (2.22). 

In order to apply the second condition, one has to apply first the solvability 
condition a t  order E and then solve for the &independent components of the 
horizontal velocity fields. Once these are known, we find the second solvability 
condition by averaging the horizontal momentum equations over 8 to give 

- - - u - u O w l + u l w O + u - a ~ + t J - ~ + ~ ,  a a a aP 
a22 a Z  ax ay ax 
a2gl - a a a -  ap 
~ - u - v o w l + v l w ~ + u - ~ + u - v ~ + +  
a z 2  a Z  ax ay ay 

(2.27) 

(2.28) 

and then over z .  This second average removes the vertical Reynolds stresses because 
they are zero on boundaries. However, their presence significantly alters the vertical 
profile of ti1 and vl, the @independent component of the perturbed field; and 
therefore they contribute to the horizontal stresses aa,/az and av1/az a t  the 
boundaries z = ki. We obtain 

(2.29) 

(2.30) 
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In  (2.27)-(2.30), the overbar means an average over 8, 
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the angle brackets < ) denote averages over both B and z ,  

(2.31) 

(2.32) 

and the square brackets, 
[f(z)l$ = f($) -f( - k ) ,  

means the difference in the value off(z) at the upper and lower boundaries. The 
solvability condition at order e2 tells us that 

(2.33) 

a condition which is enforced by the introduction of a mean drift stream function 
$K y ,  TL 

all. all. 
(u,) = -, (v,) = -- ay ax. (2.34) 

The solvability condition is obtained by eliminating p ,  from (2.29), (2.30), expressing 
the left-hand sides of the equations in terms of l/f and obtaining a single equation (1 2) 
which links the mean drift stream function $(X, Y ,  T) with derivatives of the phase 
function O ( X ,  Y ,  T). However, before we can achieve this in a concrete way, we must 
know the vertical ( z )  structure of the &independent horizontal velocity fields ti1 and 
D,, and this we must obtain by solving (2.21)-(2.25) after first applying the 
solvability condition which gives rise to the phase diffusion equation (1 .1) .  

So our task now is to effect this calculation. There are many non-trivial steps in 
the process, so in first presenting them we shall avoid as much of the detail as possible 
and postpone the discussion of particulars plus the many crosschecks we used to the 
Appendices. The first step is to introduce cross-roll along-the-roll horizontal 
velocities 

(2.35) 

where 6 is a unit vector having the direction of the local wavevector k lana  
u = (?;, w). I n  particular, since Go = 0, we can invert (2.35) to obtain uo = k,iio, 
vo = k,ii,, where So is the horizontal velocity of the straight parallel roll solution 
(2.8). Using this notation, the averaged horizontal Reynolds stresses can be 
expressed as 

where, in deriving (2.36) we have used the fact that  the wavevector k is the phase 
gradient and therefore subject to the condition (V x k )  - 2 = (ak2/i3X) - (tIk,/aY) = 0. 
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Having rotated the horizontal velocities to a frame of reference coincident with the 
local cross-roll and along-the-roll coordinates of the rolls, we next must decide how 
we are going to decompose the fluctuating fields 3, = f - u,, 6, = (f x u,) 2, w,, T,, 
p , .  For the steady roll solution we had introduced the bases {gk(z) eim6, g,(z) eim6, 
sin nn(z +a) eim6 and cos nn(z+t) eim6} for these fields respectively. However, the 
steady roll solution has no net flux in either of the horizontal velocities whereas we 
now know that, because of the pattern curvature, a mean drift flow will be produced. 
Therefore, in principle, we should solve the equations for the fluctuating fields on a 
set of basis elements which includes the extra modes f o ( z )  and go(x), such that the 
mean fluxes 

S I f O ( Z )  __ 2 dz7 f1g0(z) a dz 

are non-zero, in the two horizontal velocity components. This means that when the 
solvability condition (which leads to the phase diffusion equation) is applied, the 
term V p ,  involving the gradient of the slowly varying pressure component p ,  will 
enter directly into the phase diffusion equation as the adjoint eigenfunctions will 
contain terms whose vertical average is non-zero. Whereas the presence of this term 
is absolutely correct, in this form it is difficult to see that it is precisely equivalent 
to an advection of the phase contours by the mean drift velocity. Therefore, we adopt 
a slightly different approach, which leads to a more natural form of the phase 
diffusion equation in which terms involving V p ,  are absent and are replaced by a 
term representing the advection of the phase contour by a mean drift horizontal 
velocity field. The consistency and complete equivalence of the two points of view is 
discussed in Appendix B. 

Accordingly we write 
3, = u,+3;, B, = v,+o;, (2.37) 

where the components U,, V, are @independent and have a non-zero mean flux with 
a vertical structure f(z) satisfying the zero boundary conditions on z+$ The 
components 3; and 6; have zero fluxes. In practice we shall choose f ( z )  to have the 
profile of a Poiseuille flow x 2 - a  because, as the Prandtl number gets larger, the 
vertical structure approaches this profile closely; namely the terms in C;, 6; 
contribute significantly to the stresses a t  the horizontal boundaries, i.e. to the left- 
hand side of (2.29), (2.30). Using (2.34) we can write 

(2.38) f "  f a  
( f )  ( f )  

U,  = - (k  x V$)  - 2, V, = - -k * V$ 

where ( f )  = f ( z )  dz. 
The equations for 4,, B,, w,, T,, p1 decompose into two separate groups, one set for 

3,, w,, T,, and p ,  and a separate equation for $7,. The equations for the former set are 
singular, having a non trivial roll solution a.iio/a8, awo/ae, aT,/ae, i3p0/ae. They are 
not self-adjoint, however, and therefore we shall be required to  compute the adjoint 
solution. On the other hand, the equation for B; is non-singular. The equations are 

(klg+ g) c; - 20-k&i0 a c; - 0-- a (Go w1 +a; wo) - k 1  aP 
a2 ae 

a , .  ac, a 
a6 ae ax aZ = crO,-uo + crU, k-+ 0 - w o ~ - ~ - D g 2 i ,  + aV . f 3; + (f . V )  (po +p , ) ,  

(2.39) 
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a a aP 
aZ a2 

( k2& + &) w1 - a k  a (Go w, + 6; w,) - 2a- W ,  W, -2 + q 

a a 
( k2  $+&) q - k z  (6, +el To) -- aZ (w, q +w, T,) +Rw, 

aTl a q  a q  
ae ae ae = @T-++U,k- -D-++-f60q,  (2.41) 

(2.42 b)  

a a 
aZ ( k2 & + &) 6, - aka$,  6, - U- ( 1 1 ~ ~  6;) 

- - -~ a 2  v, +0w0--2c,( fx  a VI (f - V )  * f ) + a c ; ( f x  (f * V )  R ) + ( f x V ( p o + p s ) )  - 2. 
az2 aZ 

(2.43) 

The equations for the adjoint fields (CA, CA, wA, T A , p A )  with the boundary conditions 
that the first four variables vanish at the horizontal boundaries and t,hat, all are 
periodic in 0 are 

(2.44) 

a a 
ae aZ (k2g+$) !PA +wA + biz,,- T A  + w,- TA = 0, 

(2.45) 

(2.46) 

(2.47) 
a a 
ae aZ k-GA+-WA = 0, 

1:A+akG,-6A+crwo~6A a = 0. 
ae aZ (2.48) 

For these equations, there are two non-trivial solutions. The first, (GA, wA, TA,pA,  
cA = 0) must be computed as function of k numerically and corresponds to the 
homogeneous solution (a/&!?) (Go, w,, q , p , ,  6, = 0) of the homogeneous equations 
(2.39)-(2.43). The second, (GA = wA = T A  = GA = 0, p A  = 1 )  corresponds to the 
simpler solution (a/aps) (Go, w,, To, p ,  +p,). To each of these solutions of the adjoint 
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problem, there corresponds a non-trivial constraint, a solvability condition found by 
applying the Fredholm alternative theorem, on the right-hand sides of (2.39)-(2.43). 
As we have mentioned, the second solvability condition is satisfied trivially a t  order 
e and only gives a non-trivial result a t  order e2. I ts  application a t  second order in e 
requires a knowledge of the &independent components of .ii; and v”;. 

On the other hand, the application of the first solvability condition gives a non- 
trivial constraint, the phase diffusion equation, a t  order e :  

+ ( T ( V - R . ~ ~ , W , , W ~ ) -  

(2.49) 

The notation (GA, a.ii,/aO) means 

In practice, these inner products and indeed the concrete representations of the 
adjoint solutions are all calculated in the Galerkin basis used to convert the partial 
differential equations (2.39)-(2.43) to  algebraic equations. However, it is useful for the 
moment to treat the equation formally in order to see its structure. The factors of 0, 
and ( k x V $ )  - 2 ,  depend only on k, the modulus of the wavevector. They are 
determined numerically. Writing V = V x $2, the first two terms can be written as 

@ , + p ( k )  k * V ,  (2.50) 

a combination which indicates that the contours of constant phase are advected by 
an effective (a vertically averaged with non-trivial weighting) mean drift field p(k)  V. 
Observe that while V ,  the horizontal velocity induced by the short-scale Reynolds 
stresses, is divergence free, the effective mean drift field p(k) V,  which advects the 
phase contours, has a non-zero divergence. The remaining terms divided by the 
factor multiplying O,, can be written in the form 

Y11 Ox, + 2Y12 Ox, + Y22 O Y Y ,  (2.51) 
where 

Y11 = Y(k) +P(W @L Y12 = P ( 4  Ox Om Y 2 2  = Y ( k )  + P ( 4  (2.52) 

and, after multiplication by a suitable integration factor, this term takes the 
rotationally invariant form 

(2.53) 
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The phase diffusion equation is, therefore, 
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(2 54) 

and has exactly the form derived by Cross & Newell (1984) for several model 
equations of Oberbeck-Boussinesq type. 

It remains to derive the equation for 

1 
O T + p ( k ) k *  V + - V *  kB(k)  = O ,  

7 ( k )  

V = V X $ 2 .  
The steps in this calculation are 

(2.55) 

(i) Solve the singular equations (2.39)-(2.42), partial differential equations in the 
independent variables 8 and z ,  for IZ;, w,, T,,plAand in particular the &independent 
component of .ii.i (which we call 6,) in terms of (k  x V $ )  - 2 and the partial derivatives 
@ T ,  Ox,, Ox,, By,. We find 

Zi, =~oOT+Zil10~x+2Zi120XY+ZiZZOYY+Zi(k~V$) * 2. (2.56) 

(ii) Solve the non-singular equation (2.43) for G; and in particular its &independent 

6, = B,, Ox, + 2B1, Ox, + Ba2 O,, -B(k * V$) .  (2.57) 
The total &independent velocity components U, +til, V, + B ,  in the across-the-roll 
and along-the-roll directions are therefore exactly (2.56) and (2.57) with Zi replaced 
by f/(f) +22 and 6 replaced by f/(f) +B. It is important to make the point that the 
functions f / ( f )+u and f / ( f ) + B  are independent of the choice of f(z). This was 
verified numerically by comparing these functions for several choices of f(z), among 
them f(z) = z 2 - a ,  the most convenient, and f(z) = sinx(z+i). 

Remark By inspection of the right-hand sides of (2.56) and (2.57) the terms 
Zi,, Ox, + 224, Ox, + 2i2, O,, can be seen to have the form of an integrating factor 
times V - kF(k) .  The terms Bll Ox, + 2B,, Ox, +dZ2 O,,  have the form of the 
z-component of a curl, namely (V x kF(k))  . t. 

The coeficients Go, G,,, Cli are functions of z .  

component which we call B,, 

(iii) Define 

(2.58) 

and substitute 

into (2.29), (2.30). We obtain 
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We can write 
1 

all ~ x x + 2 a , 2 @ , y + a 2 2 0 , y  = ,-V - kBL(k), 
7,(W 

P 1 1  Ox, + 2P12 Ox, + P 2 2  OYY = (V x kB#) * f. 
The mean drift equation is obtained by eliminating p,, 

213 

(2.60) 

(2.61) 

1 
(a'-a,pk)(k x V$)  * f + a ,  6 kBL(k)--V * kB(k) 

7(k) 

+ V (k( -pf  * V @ +  (V x kBfi(k)) - f)) = ( ~ 2  * V x kV * kA2, A2  = - (") 
k2 ' 

(2.62) 

where the phase diffusion equation (2.54) is used to replace 0, and we have noted 
the fact that the second term on the right-hand side of (2.36) is a gradient. Since B, 
always occurs together with B we define a new B,,?, defined by 

1 

7, 
= -V kB,. 

We also set 

and then write (2.62) as 

a'-a,pk = a 

(2.63) 

(2.64) 

-V * L(V x kBp) * 2. 42.65) 

Note that the term containing A2 could be absorbed in B,. It is not done here since 
we want to separate the contributions coming from the horizontal and vertical 
Reynolds stress and because it will be useful to keep an explicit dependence on the 
amplitude A in Appendix E. The two equations, (2.54) the phase diffusion equation 
and (2.65) the mean drift equation, constitute a closed pair of equations for the 
slowly varying fields 

(2.66) 

We observe that the equation pair (2.54) and (2.65) has the properties of translational 
invariance, rotational invariance and (local) Galilean invariance. The first two 
properties can be seen by inspection. A small calculation will show that the equations 
are also invariant if the slowly varying velocity U(X, Y ,  T) is added to f/( f )  V and 
the spatial coordinates are measured with respect to a frame of reference moving 
with velocity dXldT = U. So even though the original microscopic system does not 
have the property of Galilean invariance because of the no-slip boundary conditions, 
the macroscopic equations describing the dynamics of the wavevector and mean- 
drift fields do. 

In most cases, the most natural conditions to apply on the lateral boundaries are 

k . f i =  V . f i = O ,  (2.67) 

namely the lateral boundary is normal to constant phase contours (the roll axes are 

k(X,  Y ,  T) = VO, V(X ,  Y ,  T )  = V x @.z". 
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-0.4 -0.2 0 0.2 0.4 
Z z 

FIGURE 6. The vertical structure of the coefficients of ( R  x V$) + 2 (circles) and - k .  V$ (squares) 
for (a) P = 0.71, R = 1800 and ( b )  P = 0.71, R = 3000; and the Poiseuille profile (triangles). 

perpendicular to the boundary) and also a streamline. In certain situations, it may be 
necessary to take account of viscous boundary layers associated with the mean drift 
velocity. On the other hand, if the lateral boundaries are heated, they can force the 
roll axis to be tangent to the boundary, and in those cases the relevant boundary 
condition is that 

k x i i = O  (2.611) 

or that the lateral boundary is a constant phase contour. We shall study this case 
when we examine the stability of boundary forced circular roll patches in cylindrical 
geometries. 

As a final remark in this subsection, we want to emphasize the importance of 
solving for the complete @independent mean drift velocity fields U,  +GI ,  V, + 6, and 
not simply relying on the first terms U,, V, which are the ones associated with non 
zero flux. In  figure 6,  we show gTaphs of the z-dependence of the coefficients in U ,  +dl 
and V, +.G, proportional to (k  x V$) - z  ̂ and ( - f - V$) respectively at Rayleigh 
numbers 1800 and 3000 for a value of Prandtl number P = 0.71. If the slow pressure 
gradient V p ,  dominated the contribution to  the mean drift fields we would find 
vertical profiles which were Poiseuille-like. In figure 6 ( a ) ,  in which we plot 4, G (the 
coefficients of ( R  x V$) - 2 and - f - V$ in U, + 4,, V, + 6, respectively), we observe 
that the profiles match the Poiseuille-like profiles arising from U,,  V, alone very well. 
However at R = 3000, figure 6 ( b ) ,  there are significant differences, in particular in the 
profile of i2 marked with circles. We find this behaviour, the departure of the vertical 
structure of the (f x V ~ )  - 2 component of the &independent field, to  be typical of the 
across-the-roll component of the mean drift velocity a t  all low and low to moderate 
Prandtl numbers up to about P = 3. Obviously this departure has a crucial effect on 
the coefficients in the mean drift equation because both a and ,8 depend on the 
boundary stress which depends on the derivatives of Zi and 4 at z = *a. 

In  order to find the z-structure of the total, as opposed to that of the ( R  x V$) - f 
term, mean drift velocity field, we also have to  take account of the other terms such 
as aij, Pij., i = 1 ,2  which are the coefficients which depend on Ox,, Ox,, O,,, namely 
the particulars of the pattern structure. These terms are also import,ant and non- 
trivial. I n  summary, then, we want to stress that for low to moderate Prandtl 
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numbers, any attempt to  circumvent solving for the full d,, d, fields by guessing the 
vertical structure of their &independent components is doomed to failure. Indeed, in 
our first attempts to  derive the phase diffusion and mean drift equations, we had 
fallen into this trap. 

2.4. Implementation of the calculation 
The key step in this list is the calculation of ui, w,, T,, p ,  from the singular equations 
(2.39)-(2.42~) and v"; from the non-singular equation (2.43). The first set of equations 
can be written in the vector form 

L,(d;, w,, T,, p,) = co 0, + c,, o,, + 2C12 o,, + c22 o,, + c, R * vps + c2(R x vq) 2, 
(2.69) 

where the vectors c,, c,,, c,,, cZ2, c, and c2 are 

Cl, = 

(2.70) 
c, = u-Go,ff-wo a a  -.rh,o), ( :O a8 'a8 

c12 = 

c 2 2  = 

(2.72) 

- 4k;-  -To +-To + ~ ' - ( T , w , ) + -  k2 a 
k:) ( i3:'(:* ) :O ) ( k a k 2  

- 4k k - -u, + C  2-- k1k2 a $+A,$ d2 k + 2-- k,  k2 aP0 ( 'aZ2(;O-)) ( k ak2 k3 ') ( k 82) 

( 1 2ai2(:0 )) ( k k  k ak2(W0d0)+wk:) a 
k3 

- 4k k - -w, + U  2'- 

(2.73) 

2--d k; a k I k 2  - 
+---?Ao, k ak2 k3 

- 4ki-  -do +-do + U  

- 4k:- -w, +-w, +u 2--(w0d0)+- 

( a12(:d ) :O ) ( 
k3 

(2.74) 

ki a ( ai2(;O ) :O ) ( k a k 2  

k; a 6 0  2 2 - - d  +pkl, 
k a k 2  



216 A .  C .  Newell, T. Passot and M .  Souli 

aw, a q  
ae ae aw0 f’- f”, akf -, kf -, 0. 

The equation for fii is 

where 
L2(c:) = e l l ~ x x + 2 e 1 2 0 x , + e 2 2 ~ , , + e l ( L x ~ p , )  - t - e 2 L .  v ~ ,  

ell = -- ‘if2 ( 2k2 -k US; - 24,  

k;-kt  ap ( ak2 
e12 =k3 2 k 2 2 + a 4 ; - 2 S ,  

el  = 1, 

1 
e2 = -(uw,f’-f”). 

(f) 

(2 .75)  

(2 .76)  

(2 .77)  

(2 .78)  

(2.79) 

(2.80) 

(2.81) 

We observe that all the 8- and z-structure is contained in the coefficients c,, c,: c2, el, 
e2: ~ 1 1 ,  ~ 1 2 ,  c22, el,, e12, e22. The variables Ox,, O x y ,  @y y ,  R Vp, ,  (R  x V p s )  - z“, k * V $ ,  
(k  x V$)  - z are all constants as far as integration in 8, z is concerned. Therefore 
the particular solutions will also be linear combinations of the latter variables 
and will have the form (2 .56 ) ,  (2 .57) .  I n  particular, since the terms c l lOxx+-  
2c12 Ox, + c22 O,, have the form of a scalar function of k times V - k F ( k )  for some 
scalar Ffk) ,  then so will the solution. Also, the particular solution arising from 
ell Ox, + 2e,, Ox, + e22 O,, will have the form V x kG(k)  2 for some scalar a(lc). 

How are these equations solved ? First they are converted to  algebraic equations 
for the coefficients of Si, wl, T,, p ,  expanded in the bases {eime(gb(x),g,(z), sinnn(z+i), 
cosnn(z+ i))} respectively, and 6; expanded in the basis {eimegb(z)}, by projecting 
(2 .39) ,  (2 .40) ,  (2 .41)  and (2 .43)  into the bases {eime (gb(z), g,(z), sinnn(z+i), gh(z))} 
respectively. The algebraic equations arising from (2.42 a )  are obtained by direct 
identification of coefficients of eimegh(z). In  this way we obtain two systems of 
algebraic equations : 

A l x  = c (2.82) 

from ( 2 . 3 9 ) - ( 2 . 4 2 ~ )  and, from (2 .43) ,  

A 2 y  = e.  (2.83) 

Because we have chosen that component of the horizontal velocities ii;, 5; with non- 
zero flux to be contained entirely in U,, V,, the solutions Si, 6; are ezpanded in 
bases with zero flux, i.e. f S; dOdz = f v“; d8dz = 0. Then, because c1 k - V p ,  and 
e l k  x V p ,  - 2 have no projections in these bases, no terms proportional to V p ,  will 
appear in either S; or v”;. On the other hand, if we had decomposed S,, in the wider 
basis, then terms involving V p ,  would have appeared on the right-hand side of (2.76) 
and (2.77) and have taken the place, in the phase diffusion equation, of the term 
p ( k )  k - V .  The equivalence of the two approaches is discussed in Appendix B. 

There is a fundamental and important difference between the two systems (2.82) 
and (2 .83) .  The first system is singular; A, has a null space of dimension two. The 
second system is non-singular and can easily be inverted for all e .  The vector c on the 
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right-hand side of (2 .82) ,  however, is constrained to lie in the range of A, and a 
necessary and sufficient condition that it does is the Fredholm alternative theorem 
which demands that 

UTC = 0 (2 .84)  

for each uT(u) which is a left (right) null row (column) vector of A,(AF). For the 
null vector corresponding to the homogeneous solution (a/aO) (Go, wo, T,, p o )  of 
( 2 . 3 9 ) - ( 2 . 4 2 ~ ) ,  (2 .84)  is precisely the phase diffusion equation and indeed the inner 
products appearing in (2.49) are evaluated directly from (2 .84)  for each k lying within 
the marginal stability curve. The solvability condition arising from null vector ( O , O ,  
0 , l )  corresponding to the homogeneous solution (a/apS) (Go, wo, T, ,po+ps )  is auto- 
matically satisfied a t  order e .  

To solve (2 .82)  we must subtract the projection of c which lies in the null space of 
AT from c ,  namely we must replace c by c-  (uTc) u where uT is the non-trivial unit 
left null vector of AT which gives rise to the phase diffusion equation. If we think of 
solving (2.82) separately for each of the coefficients of O,, Ox,, Ox,, O,, and 
( f f  x V$) - 2, then we must subtract from each corresponding c that portion which 
was used in the phase diffusion equation. The difficulty in achieving this task is that 
small numerical errors can mean that the c is not quite in the range of A, and 
therefore we need a robust method of inversion which is relatively insensitive to these 
errors. 

The generalized inverse obtained through applying a singular-valued decom- 
position (Businger & Golub 1969) to the singular matrix A, is ideally suited for these 
purposes because it picks that solution x’ of (2.82) which minimizes the least squares 
error I( Ax - x(I ,. Therefore it effectively solves 

(2 .85)  

exactly. To see this we shall briefly describe the algorithm for square matrices and 
then illustrate its application with an example. Any matrix A can be decomposed 
into a product U D V ,  where U and V are orthogonal matrices and D a diagonal 
matrix. The diagonal entries of D are called the spectrum or singular values of A. If 
A is singular, the number of zero entries is equal to n - r ,  where r is the rank of A. 
The unit vectors consisting of the columns of U corresponding to the positions of the 
non-zero entries span the range of A, the columns of U corresponding to zero entries 
span the null space of AT. The columns of V corresponding to the position of zero 
entries of D span the null space of A. The proof of these statements is an easy 
exercise. Because U is orthogonal, it is clear from this construction that the direct 
sum of the range of A and null space of AT spans Rn. Minimizing the least squares 
error I I A ~ - c ~ ~ ~  means that c is resolved into c, +c,, where c, belongs to the range of 
A and c, to the null space of AT and that the choice of x’ which achieves this goal 
solves Ax’ = c, or (2 .80) .  For example, if 

A, X’ = C- (c, U) U, (c, U) = U ~ C ,  

A = ( ’  2 2  ’) and c=(z:i:), 

then the singular-valued decomposition of A is 

(2.86) 
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N A  ) 

FIGURE 7 .  The range R(A) and null space N(A) of the matrix A,  the null space ofAT(N(AT)), 
and the solution x’ of Ax = c given by minimizing [Ax-cl .  

The range of A(R(A)), the null space of AT(N(AT)) and the null space of A(N(A)) are 
shown in figure 7 .  

Multiplying (2.82) on the left by clr we obtain 

DVrx = WC. (2.87) 

Removing the secular part of c, the part that is not in the range of A,  corresponds 
to putting to zero the elements of U r c  which occupy the same position as the zeros of 
D since the kernel of AT is spanned by the rows of Llr which correspond to  these 
positions. Then (2.87) can be solved for the other non-zero components and we get 
x’ = VD-lLlrc, where we replace the singular entries in D-l by 0. By minimizing 
I I A X - C ~ ~ ~ ,  this solution chooses an x’ so that Ax’ is closest to c, namely i t  solves 
(2.74) by replacing c by c, = c- c2 = c- (c, v )  v = (gC(l) + c @ ) )  (i) in this example. Thus 
the generalized inverse algorithm arising from the singular-valued decomposition of 
A automatically takes account of the Fredholm alternative theorem. It therefore 
should have widespread application in situations for which one must go beyond the 
first order in the perturbation parameter to apply all the solvability conditions. After 
preparing the manuscript we learned that Chen & Joseph (1990) had also found the 
singular decomposition method to be extremely useful in obtaining and deriving 
solvability conditions of complex Ginzburg-Landau type. 

There still remains a practical difficulty involving the conditioning of the matrix 
A. The condition number of A is the ratio of highest to lowest non-zero singular 
values and if its square exceeds lo8, serious numerical errors can arise. In our 
equations, the ratio of the differential operators representing diffusion effects in 
(2.39), (2.40), (2.41) to those involved in the continuity equation ( 2 . 4 2 ~ )  (the sign of 
this ratio is best seen from the vorticity formulation in which the pressure is 
eliminated; i t  can be as large as k2N2, N the number of terms in the Galerkin 
expansion) leads to a large and therefore poor conditioning number. It is wise, 
therefore, to use (2.42a) to eliminate the coefficients of i& in terms of those in w1 or 
vice versa. However, before one carries out this elimination, i t  is necessary to apply 
the solvability conditions to (2.82), namely to remove from the right-hand side of the 
continuity equation, the projection of the vector c in the null space of AT. Once that 
part of c which arises from the continuity equation ( 2 . 4 2 ~ )  has been corrected, one 
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eliminates the coefficients of either .ii; or wl. The remaining system, which is 
essentially the algebraic system arising from (2.35), (2.40), (2.41), the horizontal and 
vertical momentum and heat equations, is then solved by the generalized inverse 
algorithm discussed previously. 

The results are fairly spectacular and we have managed to achieve an accuracy of 
better than 1 YO using a Galerkin basis of between six and ten modes in the vertical 
direction. More details of t'he numerics are given in Appendix C. 

3. Results : comparison with previous theories, experiments and new 
predictions 

In this section, we use the phase diffusion and mean drift equations to 
(i) Reproduce the borders of the Busse balloon corresponding to long-wave 

(zigzag, Eckhaus and skew-varicose) instabilities to within an accuracy (as compared 
with the numerical results of Busse) of better than 1 YO. The argument serves as a 
non-trivial check to our theory. Further, because we have explicit expressions for the 
growth rates of the instabilities and the shapes of the most unstable modes, we are 
able to understand their dependence on parameters. 

(ii) Show that the maxima of the wavenumber distribution curves taken from the 
Heutmaker & Gollub (1987) experiment a t  P = 2.5 and the Steinberg et al. (1985) 
experiment a t  P = 6.1 agree exactly with our calculated values of k,, the zero of the 
perpendicular diffusion coefficient and those of Buell & Caton (1986). Th' is serves as 
an independent check on our results since the latter calculation was done in an 
entirely different' manner by assuming that the total pattern was circular. I n  
particular, a circular roll pattern is an exact solution of the phase diffusion, mean 
drift equations a t  all Prandtl numbers provided k = k,. Further for k < k,(k > k,), 
we shall show that the focus or umbilicus of a pattern will act as a source (sink) of 
rolls. 

(iii) Argue, consistent with observation, that the onset of time dependence can 
occur for values of the Rayleigh number and the wavenumber k, chosen by circular 
roll patterns well inside the Busse balloon. 

(iv) Make a specific prediction, which appears to agree well with the observations 
of Steinberg et al. (1985), for the instability of a purely circular roll target pattern 
induced in a cylindrical container by thermally forced sidewalls. The discussion will 
involve some new thinking about the role of the amplitude order parameter near 
singularities. It is no longer slaved to the phase gradient at these points. I n  addition, 
it turns out that the non-slaved part of the amplitude parameter contributes 
significantly to the production of mean drift near the focus a t  moderate aspect ratios. 

(v) Calculate the mean drift velocity fields for two deformed patterns : the circular 
roll pattern after it has gone through a focus instability and the straight roll pattern 
after i t  has experienced a skew-varicose instability. For the latter, we explicitly 
integrate (using a biharmonic term to regularize the phase diffusion equation) the 
equations and show clearly that the mean drift velocity field induced by the 
deformation of the straight roll pattern acts in a positive feedback manner. It 
advects the phase contours so as to enhance the narrowing of the distance between 
two phase contour maxima. It is clear that if we could safely continue the 
computation with suitable regularization terms, the phase contours would be forced 
to intersect and reconnections would be formed to create a pair of dislocations. We 
shall discuss the difficulties involved in using the equations close to  this point in the 
conclusion. 

8 FLM 220 



220 A .  C. Newell, T.  Passot and M .  Souli 

3.1. The instabilities of straight parallel rolls 
We begin with a linear stability analysis of the straight parallel roll solution 

with constant k,, by setting 
O = k o X ,  $ = O ,  

0 = koX+@(X, Y ,  T), $ = Y ( X ,  Y ,  T) (3.2) 
and linearizing the resulting equations to obtain 

(3.3) 

/30@xx+ao@yy = 

where each of the coefficients is evaluated at  k,. First, let us check instabilities that 
are Y-independent. In this case, no mean flow is generated and stability is decided 
by the sign of the parallel diffusion coefficient D,, = (-l/rO)(d/dk)(kB),. For a 
perturbation 

the growth rate y is given by 
, (3.5) 

(3.6) 

@ = eikX+yT 

This is the Eckhaus instability. To examine the more general case for which the in- 
stability sets in with some Y-independence and for which D,, = ( - 1/r) (dldk) kB > 0, 
it is convenient to rescale 

y=- - Pokoro y 
( - kB)I, 

@,+ P y - @ x x - a @ y y  = 0, (3.7) W)I, 
Y'xx+c\Y,y = S@xxy-b@yyy, (3.8) 

(3.9) 

c = a o / P o ,  (3.10) 

(3.11) 

7 0  -- and obtain 

-- where a = - - D l  BO 
(WI, D,,' 

1 
" 'O { u(kA2)i-- (kB& - (q),} , S =  

P o (  - kB)I, ' 0  'a 

(3.12) 
b = P o k t r O  {gA2--Ba} 1 , 

PO( - w; '07, 0 

e = -  (3.13) 
P O (  - kB); 

The last coefficient will enter the calculations for circular rolls. Substituting, 

(@, !@ = (6, Y)exp(ik,X+ik,Y+yT), (3.14) 

(3.15) 
S I( 5) = - 1 - (a-  1) s+ (8 - (8 + b )  4, 

K 2  (kB)I, 1 + ( c -  1) s we obtain 

where K 2  = K i + K i  and S = KE/K2. 
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For instability, we must have y positive for some S ,  0 < S < 1.  As we have seen, 
the purely Y-independent instability, the Eckhaus instability, occurs when S = 0 and 
( k B ) k / ~ ,  is positive with the growth rate 

(3.16) 

This instability dominates the right-hand border of the stability balloon for large 
Prandtl numbers (see figure 8a) ,  the low-Rayleigh-number portion of the right 
border for moderate Prandtl numbers (see figure 86) and the left border for very low 
Prandtl numbers (see figure 8 4 .  A purely Y-dependent instability, called the zigzag 
instability occurs when S = 1 and its growth rate is given by 

(3.17) 

From (3.17) and the fact that po < 0, we see that the growth rate of the zigzag 
instability is lowered by finite-Prandtl-number, mean drift effects. This means one 
needs a strictly negative perpendicular diffusion coefficient D ,  = -B / r  in order to 
trigger the instability and therefore the left stability boundary is moved to lower 
values of k .  This can be seen by comparing the left border of the balloon in figure 
8 ( a d ) .  

The skew-varicose instability occurs when the maximum growth rate y is positive 
and for a value of 8, 0 < S < 1.  Differentiating (3.15), we find 

s - 2( s + b)  S ss - (s + 6) S 2  

1 + (c- 1) S - 1 + (c- 1)  8 2  
-- ~ ( - ~ " ) , - ~ + 1 +  - (c-  1) .  (3.18) 
dkK2 (kB) ;  

As our graph of c in figure 9 shows, it is close to unity for large ranges of the 
wavenumbers and Prandtl number. Therefore approximating c by 1,  we see that a 
necessary condition for a skew-varicose instability is that 

s > a - 1 .  (3.19) 

Both these and the other relevant quantities are plotted as a function of k a t  Prandtl 
number P = 0.71 and Rayleigh numbers R = 1800 and 3000 in figures 9 and 10. In  
graphing them, it turns out to be convenient to multiply them by a factor Dll. A table 
of values of all these quantities a t  various Rayleigh and Prandtl numbers is given in 
Appendix D. 

We note several features in figure 9. 
(i) Observe that the value which A2 = ( d ; ) / k 2  achieves a t  its maximum sharply 

increases with Rayleigh number from about 2 a t  R = 1800 to almost 6 at R = 3000. 
The graphs of kB have almost the same shape but slopes are significantly larger for 
the larger Rayleigh number. 

(ii) p, the factor which accounts for the vertical averaging of the mean drift 
adveetion velocity in the phase diffusion equation, is almost constant and negative. 
Therefore in plotting mean drift velocities we always plot pV. 

(iii) For low Rayleigh numbers, c is almost constant and equal to one. This comes 
from the fact that the vertical structure of the mean drift profile is almost Poiseuille- 
like. Also, in that case, the left-hand side of (1.2) is the vertical vorticity. For 
R = 3000, c is not 1 but varies between 1 and 0.85. 

8-2 
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FIQURE 8. The long-wave borders of the Busse balloon marked E (Eckhaus), and Z (zigzag) and SV 
(skew-varicose) and the zeros k, of B(k)  as calculated from (l . l) ,  (1.2) for Prandtl number ( a )  70, 
(b )  2.5, (c) 0.71 and ( d )  0.1. The agreement with the calculations of Busse for the E, Z,  and SV 
borders is so good that the two sets of curves superimpose exactly. In  ( b ) ,  the Eckhaus border for 
P = 2.5 is calculated accurately only to R = 5000. The skew-varicose border and k, are calculated 
up to R = 12000 where they cross. Note that the two borders become close and run almost parallel 
from about R = 7000, the point where Heutmaker & Gollub (1987) observe the onset of time 
dependency. Observe that k, crosses the SV boundary almost immediately for P = 0.1 suggesting 
that spatial and temporally chaotic behaviour will occur immediately after the conduction solution 
becomes unstable. 
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At this point, we want to make several remarks on the importance of the terms 
depending on B, and B,. These terms would have been absent had we assumed that 
the vertical structure of the mean drift velocity was determined principally by 
horizontal pressure differences and therefore has a Poiseuille-like (Gl, GI proportional 
to a - 2 )  profile. Indeed we originally made this approximation and were initially 
encouraged by the fact that our errors on the borders of the Busse balloon were less 
than 10%. However, this accuracy was fortuitous and a closer examination of Gl, GI 
revealed that the coefficients of O X x ,  Ox,, O Y y ,  0, in Gl, Gl, were equally important 
to those of (kxV$) - 2 and & - V$. Indeed the terms ( l /kT,)  (kB,)’, Bi and B, are of 
the same order as ~ r ( k . 4 ~ ) ’  and uA2 respectively. 

The second remark concerns the infinite-Prandtl-number limit u + 0. On the 
surface the disappearance of terms involving B,, B, in the mean drift equation is not 
obvious because not all terms in cy and e,, in (2.72)-(2.74), (2.77)-(2.79) contain u, 
the inverse Prandtl number, as a factor. Nevertheless, it  can be shown that in the 
limit u+O, B, and Bp cancel, and no mean drift is generated. 

Finally, we describe the result of integrating the phase diffusion and mean drift 
equations (1 .1)  and (1.2) beginning with a small initial perturbation which leads to 
a skew-varicose instability. We take as initial state, for P = 1 and R = 2500, 

0 = k,X+0.001 cos (X+ Y )  (3.20) 

with k, = 3.4, together with the corresponding mean drift field Y calculated using the 
approximation c = 1. Since we are outside the stability balloon, (1.1) and (1.2) have 
the character of the reverse heat equation and will therefore preferentially amplify 
the smallest scales. In order to control and indeed damp these scales, we add the 
biharmonic term p V 2 0  to ( l . l ) ,  in order to regularize the equation. The magnitude 
of p, which is proportional to the square of the inverse aspect ratio E ,  reintroduces a 
lengthscale into the problem by essentially indicating how large the container is 
compared to the roll wavelength. Such a correction term is indeed present in the final 
multiple scale expansion if carried out to the next order in the inverse aspect ratio, 
as was shown by Cross & Newel1 (1984) in the context of several model equations. A 
more important correction is present in the amplitude equation converting it from an 
algebraic equation where A is slaved to k to a differential one in which the amplitude 
is an independent order parameter. However, because of the complexity of the full 
Oberbeck-Boussinesq equations, it is extremely difficult to carry out that step here. 
Nevertheless it is a step that should ultimately be taken because it turns out that 
while the linear regularization is good enough to allow the instability to develop to 
a finite-amplitude state in which the phase contours are distorted in such a way that 
one sees that they apparently want to form dislocation pairs, it does not let us get 
sufficiently close to the singular state in order to study the details of the breaking and 
reconnection of the phase contours. We conjecture, but a t  the moment this is as 
much of a hope as a rational deduction, that, for sufficiently small E ,  the results will 
be independent of the exact details of the amplitude regularization and only depend 
on a certain canonical form. This will be discussed further in $4. In  figure 11,  we show 
the phase contours and superimposed mean drift field a t  two values ofp, 0.05 and 0.2, 
a t  the last time before the wavenumber k goes outside the marginal stability 
boundary in the regions of strong phase gradients. It is clear from these pictures that 
the induced mean drift field acts in a manner to enhance the production of strong 
phase gradients and the necking of contours. 
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FIGURE 11. Graphs of phase contours, initiated as 0 = 3.4X+0.001 cos(X+ Y ) ,  0 < 6 1 with 
corresponding mean drift velocity field as calculated from ( l . l ) ,  (1.2) superimposed, for ( a )  p = 0.05 
and ( b )  p = 0.2 a t  P = 1 and R = 2500. 

3.2. Circular roll patches and their deformations 
Because of the influence of sidewall boundaries, patches of almost circular rolls tend 
to be the dominant convection pattern observed in large-aspect-ratio containers. It 
is, therefore, natural to investigate whether there are equilibrium solutions and 
instabilities peculiar to these geometries which are not part of the repertoire arising 
from the deformation of straight roll patterns. 

The first important property to note is that  curved and, in particular circular, roll 
patches, as opposed to straight rolls, select a wavenumber, an observation first made 
by Pomeau & Manneville (1981). A calculation of the selected wavenumber k, a t  
finite Prandtl numbers near threshold was done by Cross (1983) and a t  finite Prandtl 
and Rayleigh numbers by Buell & Caton (1986). Their idea was to expand the 
circularly symmetric solution in powers of 1 / r  and then determine the wavenumber 
by the solvability condition a t  first order. In our theory, in the infinite Prandtl 
number case, we see that i t  is simply the curvature of the rolls that induces this 
selection. At finite Prandtl number, we must assume that the pattern is circular. 
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I I I 
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0.4 0.6 0.8 1.0 1.2 1.4 I 3 4 

FIGURE 12. ( a s )  From Heutmaker & Gollub (1987), showing the distribution of wavenumber for 
P = 2.5 at ( a )  R = l . iRc,  E = 0.01, (6) R = 2.61RC, E = 1.61, and (c) R = 4.64&, E = 3.64. In  (d ) ,  the 
maxima (marked with x ) and the support of the  wavenumber distribution are superimposed on 
figure 8(6),  the Busse balloon. Note that  the maxima are at k,. Observe that  at R = 2.61RC, where 
the states achieve equilibrium, the wavenumber band number lies entirely in the balloon, whereas 
at R = 4 . 6 4 4 ,  a significant number of rolls have supercritical wavenumbers. 

2 k  
k l k ,  

Then it is an easy exercise to show that no mean drift is produced and therefore, from 

ao 1 a 
-+--rkB = 0.  aT w a r  

(3.21) 

In  particular, if the pattern is stationary 

rkB(k) = constant (3.22) 

and in order that (3.22) holds arbitrarily close to the pattern centre, the constant is 
zero to leading order ; it may be of order e, the inverse aspect ratio, reflecting the 
order-c corrections to (1.1). Hence k is chosen so that B(k) = 0. This wavenumber, the 
zero of D, = ( -  l / r ( k ) )  B(k) ,  we call I C E .  As we have seen in figure 8, we can calculate 
k ,  as function of Rayleigh number a t  each Prandtl number. We now compare this 
theoretical result with the observations of the wavenumber distribution as function 
of Rayleigh number, as measured in experiments by Heutmaker & Gollub (1987) and 
Steinberg et al. (1985) at  Prandtl numbers 2.5 and 6.1 respectively. 

The Heutmaker-Gollub experiment uses natural convection in cylindrical 
containers, and as we have seen in snapshots taken a t  several Rayleigh numbers, 
while the patterns have many features, they are dominated by circular patches. 
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" 
0.7 0.8 0.9 1 .o 

k lk ,  
FIGURE 13. Taken from Steinberg et al. (1985), showing the wavenumbers (as measured by 2 x / A ,  
where A is the width of the second pair of rolls from the wall) of the 36 (e), 3 (m), 2: (A) roll 
equilibrium states as functions of Rayleigh number as the Rayleigh number is increased. Open 
symbols denote the same states achieved as the Rayleigh number is decreased. Superimposed are 
the zigzag, Eckhaus, and cross-roll stability boundaries, the prediction of the wavenumber by 
small-amplitude theories (light line) and our predictions (--). 

The wavenumber distribution of three values of the Rayleigh number, R = l.lR,, 
R = 2.61RC and R = 4.64R, are shown in figure 12(a+). In  figure l 2 ( d ) ,  we show 
the maxima of these distributions and the ranges of support of the wavenumber 
distribution (the values of k where it is non-zero) superimposed on figure 8 ( b ) ,  the 
Busse balloon. Note first that our theoretical calculation of k, agrees almost exactly 
with the maxima a t  all three Rayleigh numbers. This suggests that, even at low and 
moderate Prandtl numbers, the zero of B(k)  plays an important role. However, it  is 
not completely dominant and there is a range of wavenumbers. Some spread in 
wavenumber, of the order of the inverse aspect ratio, can be expected by simply 
including the mean drift field, but this is not enough to explain the observed 
distribution width. Wavenumbers less than the maximum are caused by the decrease 
of wavenumber around defects and along boundaries as the pattern attempts to 
adjust to  the boundary conditions (at  moderate Rayleigh numbers). Wavenumbers 
greater than the maximum are due to the compression of rolls. Roll compression is 
caused by several mechanisms, sidewall boundary conditions and more importantly 
the focus instability, and each will induce a mean drift field. Notice that on figure 
1 2 ( d ) ,  the support of the wavenumber distribution lies inside the Busse balloon at 
R = 2.61RC and partially outside at both R = R ,  and at R = 4.64R,. We return to  
this observation shortly when we discuss the onset of time dependence. 

The Steinberg et al. (1985) experiment involved the initiation of circular target 
patterns (as shown in figure 4d, e ,  f) by sidewall forcing. I n  figure 4(e) ,  we see a stable 
circular target pattern with three roll pairs at values ofR of about 3RC. In  figure 4 (  f ), 
the target pattern has shifted off-centre but still has three roll pairs. They estimate 
that the off-centre shift of the umbilicus begins for values of R about 3.5R, and the 
shift increases monotonically as with R. We shall come back to the reason for this 
shift shortly but a t  this point we draw the readers' attention to figure 13, taken 
directly from Steinberg et al. (1985). I n  figure 13, the solid circles (squares, triangles) 
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denote the values of k (as measured by 2x/h, the wavelength of the second roll pair 
from the walls) in a pattern containing 3+(3, 2;) roll pairs as R is increased. The open 
symbols of the same type correspond to decreasing R. The zigzag and cross-roll 
instabilities are shown on the left and the prediction of the dominant wavenumber 
by a small-amplitude calculation is shown on the right. Our calculation of k ,  is shown 
as a boldfaced hatched line. The agreement with the observed dominant wavenumber 
again strongly suggests that there is a tendency for almost circular patterns to select 
k,, the zero of the perpendicular diffusion coefficient D ,  = - ( 1 / 7 ( k ) )  B ( k ) .  We cannot 
prove, as yet, that ( i . i ) $  (1.2) have a Lyapunov functional which naturally leads to 
this selection, but remind the reader that in 1984, Cross & Newel1 pointed out that  
the functional 

F = ll( - i r B d k 2 ) d X d Y  (3.23) 

acts as a Lyapunov functional in the infinite-Prandtl-number limit as long as 
dislocations are stationary when k = k,, which in this case is the zigzag instability 
border of the Busse balloon. 

Next we ask what happens if we allow the circular patterns to be time dependent. 
In  that case, if we take k to be a fixed value k,, 

ao i 1 
- = - - k o B o ; ,  
i3T 7, 

(3.24) 

which shows that 0 demeases for k < k ,  where (1/7,) k ,B ,  is positive and increases 
fork > k, where ( 1 / ~ , )  k ,B ,  is negative. Since in writing down (3.24), we have chosen 
the k in V k B  to be k,, k ,  positive, the phase contours have increasing value as r 
increases. Therefore a decreasing 0 a t  fixed r means the phase contour a t  that value 
of r has been replaced by one from the inside. Therefore the focus singularity 
(umbilicus) is acting as a source of new rolls. On the other hand, for k > k,, the 
umbilicus acts as a sink. Suppose the wavenumber near r = 0 is k ,+Ak(r ) .  Then for 
Ak,  v small, the exact solution 0 = k, + Ak(r )  dr  + vT gives 

-k,B’(k ) 
Ak(r )  = v$-. 

7(kB) 
(3.25) 

Therefore when the focus acts as a source (sink) v > 0 (< 0 ) ,  namely when the 
wavenumber near r = 0 is less (greater) than k,, the wavenumber correction Ak(r )  
increases (decreases) with r so that the wavenumber in the outer part of the circular 
patch always has the tendency to move towards k,. 

We next carry out a linear stability analysis of a stationary circular patch by 
setting 

where r = (X2 + P);, tan 0 = Y / X ,  the time t is rescaled as - (7 , /k ,  B;) t ,  and we shall 
choose k, to be k,, the zero of B ( k ) .  (Note on notation : The use of t  and 0 as rescaled 
horizontal diffusion time and circular angle are different from the t ,  the original 
dimensionless time in the Oberbeck-Boussinesq equations and 6 = O / E ,  the phase, 
used in $2.) Before we discuss the calculation, we want to mention a small but subtle 
difficulty involving the singular nature of the polar representation of the field in 
terms of amplitude and phase at the origin r = 0. Note that the undisturbed phase 
0, = k,r  has a discontinuity in derivative on any ray through the origin. This of 
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course is necessary to ensure that the phase increases along any ray from a chosen 
value, say zero, a t  the origin. We want the perturbed field 0, +A@ to have the same 
property, namely that the phase increases on any ray emanating from its new zero 
point. For example, if the umbilicus is shifted from X = 0, Y = 0 to  X = 0, Y = -D ,  
then on the ray X = 0, we want to choose 0 = ko(Y+D)  for Y > -D and 
0 = - k, (Y+D)  for Y < -D. Mathematically this difficulty can be overcome by con- 
sidering a function of phase, like w(X, Y )  = cos @, which represents a real field variable, 
such as velocity or temperature. Observe that whereas the translation modes 
a@/aX,  aO/aY of the phase are discontinuous at  the origin, the translation modes 
of w are continuous. If we write w(X, Y + D )  as w(X, Y)+Daw/aY ,  where w(X, Y )  
is cos k,(X2 + P)f and then invert we would obtain 0 = c0s-l w(X, Y )  +D d@,/aY, 
and a@,/aY = k,  sgn Y .  The important point to make is that one must chose the sign 
of c0s-l so that along a ray 0 is always positive. Therefore the representation 0 = 
k,  r +  k,L)(r ,  t )  sin m0 is fine as long as we remember that 0 is positive. We want to 
emphasize the point here of introducing a continuously differentiable function of 0 
like cosine because very similar considerations are important when we consider the 
nature of the relevant order parameters near defects. 

We linearize the equations in D and q5 and, after a little calculation, find that (1 .1)  
and ( 1.2) become 

and 

1 
r 

0; - (D’)rr - - (D’)? + 
1 m2c (rD‘ ) r D’ D 
r r2 r2 r2  

q 5 r r + - q 5 r - -  = ms-- me -+ m(m2 - 1 )  b .i.3 

(3.27) 

(3.28) 

respectively. I n  (3.27), (3.28), c, s, e, 6 ,  are exactly the same quantities as were defined 
in the previous section ($3.1) and D‘ is aD/ar. The wavevector k ,  in circular 
coordinates, is 

k = k,( I + D’ sin me) ,  mk, D / r  cos m0, (3.29) 

and the effective mean drift velocity field pV which advects the phase contours is 

(3.30) 

Before we discuss the boundary conditions, we must understand the extent to 
which the stability problem can be considered by appealing to the phase equation 
alone. First, there are no boundary conditions natural to the phase equation in a 
finite geometry except that an integer number of rolls fit in the box. If, during the 
instability process, the number of rolls is conserved, then D is zero at the boundary. 
Second, observe that the phase equation to this order does not contain the aspect 
ratio. By choosing to non-dimensionalize length with the radius of the container so 
that its boundary is r = 1,  the stability of circular patterns would appear to be 
independent of aspect ratio for container width E-’.  We shall see that this is only the 
case when E is sufficiently small, and that the number of rolls n in the container 
sufficiently large that 1/n is an order of magnitude less than the width of the stability 
band of the Busse balloon. In order to bring the effects of finite E back in the model, 
and obtain an approximate boundary condition on D’ a t  r = 1,  and, most important, 
to describe correctly the behaviour of the patterns near the focus singularity, we 
reintroduce the amplitude as an active order parameter to regularize the phase 
equation. The details are given in Appendix E. Here we survey the main points. The 
natural boundary condition on the amplitude A at r = 1 is A = 0. The mean drift 
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velocity V should also have a zero normal component there. Therefore k . V will be 
at most order E at the boundary, so that  (a/&-) rkA2F(k) (B(k)  = A2(k)F(k)  when the 
amplitude A is slaved to k) must be zero to leading order. This gives us that rkA2F(k)  
is constant and the boundary conditions on A make this constant zero or a t  most of 
order E .  Outside a boundary-layer width E a t  r = 1, therefore, we must have that k 
approaches the zero k ,  of F ( k )  to within order E .  Therefore, for E small, it is entirely 
reasonable to impose the boundary conditions D’ = $ = 0 at r = 1. At r = 0, we must 
match the outer solution which is governed by (3.27), (3.28) to a boundary layer in 
which the amplitude is an active order parameter, for which details are given in 
Appendix E. This matching allows us to control the behaviour of D’ as r + 0. Without 
this control D‘ will oscillate infinitely fast as r + 0 in the unstable case. The relevant 
boundary conditions are that both D and the perturbation amplitude are zero a t  
r = 0. However, for small E ,  the stability result depends only weakly on the exact 
structure of the amplitude equation and on the nature of the solutions in the e layer 
about r = 0. 

With these considerations in mind, we return to a qualitative analysis of (3.27), 
(3.28) for the case of the most unstable mode m = 1 .  We will ignore the term eD’/r2 
(for moderate Prandtl numbers, this is a reasonable approximation, see the table in 
Appendix D) and take c equal to unity, which is a good approximation for almost all 
values of P and R. We can now solve (3.28) exactly, 

D’ 
$ = r s s  p d r ,  

1 
(3.31) 

and, from this, we see that the term on the right-hand side of the phase diffusion 
equation (3.27) which represents the advection of wavenumber is 

D 
r2 

S-. (3.32) 

For positive s, this term acts to increase the wavenumber, while the terms 

are simply the r-derivative of the parallel diffusion (l/r)/(a/&) (rD’) term in (1.1). 
The mean drift field has the shape of a dipole 

p V =  %[ 70 -( [:$dr)sin8, -( [$dr+q)cosB]. (3.33) 

Observe that near r = 0, the azimuthal velocity is bounded (the focus centre does not 
act like a vortex) whereas the radial velocity is ( - Bh S / T ~ )  (D’(O)/r) sin 8. Instability 
occurs when the production of wavenumber by sD’/r2 on the side of the circular 
pattern on which the rolls are compressed overcomes the diffusion of wavenumber. 
If we write D’(r, t )  = y(r) cut, we obtain 

from which we find 

ry2 dr  = -J: ryt2 dr- (1 -s) 1; I d r .  
0 

(3.34) 

(3.35) 
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0.6 I I I I I I I I 1 

R / R c  k B / k c  

1.5 0.98 0.33 
2.0 0.94 0.64 
2.5 0.89 0.91 
3.0 0.85 1.13 
3.5 0.82 1.29 
4.0 0.79 1.45 
4.5 0.76 1.59 

e 

-0.03 
-0.09 
-0.16 
-0.20 
-0.26 
-0.29 
-0.31 

c b  

1.00 0.19 
0.99 0.39 
0.99 0.59 
0.99 0.79 
0.99 0.96 
0.99 1.13 
0.98 1.28 

TABLE 1 .  Values of kB,  s ,  d ,  c, b estimated at k,  for P = 6.1 

As we have explained, since the amplitude variations are confined to the boundary 
layers, stability or instability is determined to leading order by the balances involved 
in (3.34), (3.35). In  particular we note that stability is guarantecd if s < 1 .  The 
subtlety involved in determining a sufficient condition for instability is as follows. If 
we take (3.34) on its own and take the boundary conditions that y(1) = 0 and y(0) 
is bounded, then for s > 1 we are led to solutions which oscillate infinitely fast as 
r + 0 and for which there is a continuous positive spectrum cr. Moreover, if we take 
(3.35) literally, we see that the second integral dominates the first and so it would 
appear that a sufficient condition for instability is indeed that 5 > 1.  However, this 
is not quite the case because the problem is singular and the outer solution for 
1 > r > O(s)  does not oscillate as r + 0 but grows towards an algebraic or logarithmic 
singularity before turning back to zero within the boundary layer (see figure 14). For 
s < 1,  the stability region, we find that the solution approaches r = 0 with zero 
derivative. At s = 1,  its derivative is unity. As s exceeds unity, the behaviour of y 
seems to vary from logarithmic (-lnr) to a power law divergence (P, 01 > 0). (We 
stress, however, that in all cases, the solution turns back to zero in the boundary layer.) 
If the divergence is logarithmic, thus one again would expect the second term on the 
right-hand side of (3.35) to dominate the first and obtain cr > 0. Most of our 
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numerical calculations for s > 1 seem to indicate that the first term in (3.35) has a 
stabilizing effect (in many cases the ratio of ji ry’2dr to j t  (y2/r) dr was g) and so 
instability requires s > 1 ,  and perhaps about 6. For now, all we can definitely say is 
that the focus instability is initiated for a value of s close to but somewhat greater 
than unity, and leave the extremely subtle mathematical analysis to a later paper. 
However, we do emphasize that the instability will be triggered well inside the 
confines of the Busse balloon and therefore will be of importance in understanding 
the dynamics of patterns. For example, for P = 2.5,  s exceeds unity a t  R = 2750. It 
is certainly important in the target pattern in the experiment of Steinberg et al. 
(1985) where P = 6.1 (see figures 4 d ,  e ,  f and 13). New phase contours are not created 
by this focus instability but the phase contours are compressed on the side toward 
which the dipole-shaped mean drift velocity advects them. The phase contours are 
spread out on the other side (see figure 4 f ). In table 1 we give the values of k, and 
s, c ,  b for Rayleigh numbers R = 1.5Rc to 4.5Rc at P = 6.1. We observe that the 
critical parameter s reaches unity at about R = 2.7Rc. However, as we have 
mentioned, the first term in (3.29) will delay onset of the focus instability by an 
amount which, using a trial shape for D’, we estimate to be approximately $ (the ratio 
of jp r(o’),2 dt to jp ( l / r )  D2dr) .  The critical value of s would thus be about 1.33. We 
observe that this corresponds to a Rayleigh number of 3.5R, which is consistent with 
the value a t  which Steinberg et al. observe that their circular pattern, figure 4 ( e )  
(point b in figure 13) begins to deform towards figure 4 ( f )  (point c in figure 13). The 
structure of the unstable mode is calculated in Appendix E and shown in figure 14. 
We have not yet done any finite-amplitude analysis on this instability but, from the 
experimental evidence of Steinberg et al., the instability would seem to be saturated 
at finite amplitude. The amount by which the umbilicus of the pattern shifts off- 
centre will be a monotonically increasing function of the difference between R / R ,  and 
that value at which the focus instability is first triggered. G. Ahlers (private 
communication) has experimental data on this and we hope to be able to present a 
comparison of the results of the finite-amplitude theory with experiment in a later 
paper. 

3.3. The onset of time dependence 

Based upon the experimental evidence and the analyses presented in ss3.1, 3.2 we 
shall now discuss the factors that appear to be important in initiating time 
dependence and raise some questions which will need to be answered before certain 
difficulties are satisfactorily resolved. Our starting point is a list of observations and 
remarks : 

(i) The phase diffusion equation (1.1) involves three terms. Time dependence is 
represented by O,, mean drift advection by p V - k and wavenumber diffusion by 
1/7V - kB(k). In the absence of mean drift, as would be the case at infinite Prandtl 
number or in circular roll patterns, the last term causes curved roll patterns to relax 
to a circular pattern with preferred wavenumber k,. In the presence of mean drift no 
such choice is imposed by the dynamics and stationary patterns can be achieved 
through a balance of mean drift and diffusion terms. 

(ii) In  natural convection patterns, the container cannot be tiled with a texture in 
which the wavenumber is everywhere constant. Therefore the diffusion term is never 
everywhere zero and the pattern must be time dependent or produce a mean drift 
which can balance the diffusion or both. 

(iii) The boundary condition which forces the roll axes a t  the boundary to be along 
its normal gives rise to patches of almost circular patterns in natural convection 
situations. In between the patches, there is considerable forcing for the mean drift 
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flow. However, the patches themselves are clearly circular. The stability or 
instability of exactly circular patterns is therefore very important because it tells us 
whether, within an almost circular pattern, the distortion and the mean drift (and it 
is the mean drift within the patch which is important) are maintained by the forcing 
of boundaries (if the constant phase contours are normal to the boundary, they 
cannot at the same time be circles which maintain a constant distance between them) 
or if the mean drift component is naturally induced by an instability. In the former 
case, the magnitude of the mean drift flow is determined by a balance involving how 
well the boundary forcing overcomes the natural tendency of the patch to achieve a 
circular shape. In Appendix E, we show that until the focus instability Rayleigh 
number is reached, this attenuation can be considerable. In the latter case, the 
magnitude of the mean drift component is determined by a finite-amplitude 
saturation of the unstable deformation. We expect the latter to grow by an amount 
proportional to some power of R - R, (probably (R - R,);) where R, is the Rayleigh 
number a t  which the focus instability is triggered. For a sufficiently large Rayleigh 
number (although, we have indicated, still within the confines of the Busse balloon), 
the focus instability has to be important. 

(iv) For a sufficiently large deformation of the circular pattern, the rolls on one 
side can be compressed so that their wavenumber lies far enough outside the skew- 
varicose instability boundary calculated for straight rolls in an infinite horizontal 
geometry that this instability can be initiated and dislocations nucleated. 

(v) A circular target pattern with wavenumber k + k, can do one or a combinattion 
of three things. It can remain axisymmetric and become time dependent and 
nucleate or absorb rolls in the focus until either k = k, or k is as close to k, (within 
one roll) as the finite container size will allow. It can develop a non-uniform but still 
axisymmetric wavenumber distribution with k > k, almost everywhere and adjust 
the wavenumber in the boundary layer a t  r = 0 by allowing the amplitude to become 
an independent order parameter. (To be specific, we may ask for stationary, 
axisymmetric solutions of (El) ,  (EZ), (E3)). These two situations may be related, and 
for small enough E ,  the latter may lead to the former. In a container with moderate 
aspect ratio (say E = 0.2) the incremental jump Ak in wavenumber induced by 
introducing or taking away a roll or roll pair may be comparable with the width of 
the stable band of wavenumbers and consequently it may be easier for the amplitude 
to make the necessary adjustment in a reasonably large boundary layer. As E 

decreases, however, it may be difficult for the amplitude to adjust and remain time 
independent. Instead the large-amplitude gradient can help product an extra roll. 
The third response is that the pattern break its circular symmetry and develop a 
mean drift flow which balances the diffusion term. We remark that if k is very close 
to  k, or can become so by the nucleation or absorption of rolls, the last possibility 
is unlikely if the circular pattern is strongly stable with respect to the focus 
instability. 

(vi) I n  order to sustain a time dependence on this dissipative system, a t  the very 
least one requires in the phase space either one unstable fixed point with a homoclinic 
orbit or two unstable fixed points where the unstable manifold of one intersects the 
stable manifold of the other. We have already alluded to the unstable fixed point 
connected with the skew-varicose instability, the neighbourhood of which is reached 
via roll compression. We have also indicated that the skew-varicose instability leads 
to the nucleation of a dislocation pair which climbs to the lateral sidewall and 
disappears there or glides along the boundary to disappear in the foci. The stress on 
the pattern is relieved. The mean flow subsides. How does the system return to the 
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state so that the skew-varicose instability is again initiated ? Equivalently, how did 
it get there in the first place ‘2 Is there another unstable fixed point? Or, what is 
responsible for the homoclinic cycle emanating from the skew-varicose instability ? 

There has been no clear discussion in the literature of this last point except for the 
paper of Croquette, Le Gal & Pocheau ( 1 9 8 6 ~ )  in the case of the time dependency 
seen near threshold values of the Rayleigh number for P = 0.71. In  this range of 
values, the forcing from the boundary conditions is strong because the angle between 
the roll axis and sidewall normal is a sensitive function of Rayleigh number. At onset, 
the rolls are almost straight and violate the boundary condition severely (see figure 
3a) .  However, as the Rayleigh number increases, the boundary condition becomes 
more enforced and the phase contours become more curved, as shown in figure 3 ( b ) .  
This bulge compresses the rolls in the centre and the skew-varicose instability is 
initiated. When the stress on the pattern is relieved, the rolls attempt to relax to a 
straight roll state (as in figure 3a)  but the boundary condition again forces the phase 
contours to bulge, a new roll is nucleated at the focus, and the cycle is repeated. 

However, for circular target patterns (figure 4), and for natural convection 
patterns a t  moderate Prandtl number for which the time dependence occurs at finite 
Rayleigh numbers and at which point the boundary conditions have already forced 
almost circular patches, the mechanism for setting up the mean flow has not been 
clearly established. Let us first discuss the circular target pattern case in the limit of 
very large-aspect-ratio containers. In  these cases, the increment Ak in k caused by 
the addition or subtraction of one roll is very small compared with the width of the 
stability band of the Busse balloon. Suppose now that the Rayleigh is raised past the 
point R ,  a t  which the focus instability occurs. At a certain finite Rayleigh number 
R,, greater than R,, the finite-amplitude equilibrium state representing a balance 
between mean drift and wavenumber diffusion will compress the rolls in the outer 
regions sufficiently to nucleate a dislocation pair (figure 4 b ) .  Note from Appendix E 
that the largest compression is not a t  the outer boundary. The dislocations glide to 
the focus and disappear, leaving the pattern again circular with no mean drift and 
one less roll pair. Now if the new wavenumber of the pattern is less than the value 
of E ,  a t  the Rayleigh number R,,, then new rolls will be nucleated a t  the focus and 
the system will be returned to the same unstable state from which the off-centre shift 
of the umbilicus originally occurred. The cycle repeats. For smaller aspect ratios, the 
incremental changes in wavenumber are correspondingly larger and it may very well 
be that the wavenumber of the new circular target pattern state at R,, is stable at 
this value of Rayleigh number. In this case, the second unstable state has 
disappeared, there is insufficient forcing and the pattern does not remain time 
dependent but relaxes to a new fixed point. 

For higher Prandtl number, the removal of a roll may be due to an Eckhaus rather 
than a skew-varicose instability. Indeed it would appear that in the Steinberg et al. 
(1985) experiment where P = 6.1 this is indeed the case in the transitions from 3; to 
3 roll pairs and from 3 roll pairs to 2; roll pairs. We calculated the stability 
boundaries for R = 3.5RC and P = 6.1 and found that k,, = 4.6 and k, = 5.4.  
However, because of the finite aspect ratio, it is difficult to initiate the fastest 
growing skew-varicose mode ( K t / K 2  = S2 = 0.36). Therefore when the rolls are 
sufficiently compressed by the finite-amplitude stage of the focus instability in order 
to trigger the skew-varicose instability, they are probably also in the unstable 
Eckhaus range. The Eckhaus instability has the additional advantage that it can 
remove only one roll. In  a previous paper, Arter, Bernoff & Newel1 (1987) using a full 
numerical simulation of the fluid equations found that in a two-dimensional box, the 



236 A .  C .  Newell, T .  Passot and M .  Souli 

Eckhaus instability created or annihilated a roll a t  the boundary where the 
amplitude is already small. In  the experiment in a circular cylinder, i t  is more likely 
that the extra roll is absorbed in the focus. 

We now return to the case of almost circular patches surrounding sidewall foci in 
the moderate-Prandtl-number case investigated by Heutmaker & Gollub (1987). 
Here, because the onset of time dependence occurs at values well above threshold, 
the patches are forced by the boundaries to be almost but not quite circular. After 
a roll pair has been removed by the formation of dislocations and their disappearance, 
the relaxed pattern has a wavenumber distribution whose maximum is less than k,. 
Therefore there is a tendency for the focus to produce new rolls because at this stage, 
as Greenside, Cross and Coughran (1988) observe in their numerical experiment, the 
mean drift flow has subsided and the balance to the third term in ( 1 . 1 )  is the first. 
However, once a new roll is produced by the focus, the pattern is again stressed, the 
mean flow is produced (we find in Appendix E that, in the model equation used to 
simulate the effect of an active amplitude order parameter near the focus, for 
moderate aspect ratios a significant part of the mean flow contribution is due to the 
non-slaved part of the amplitude) and the rolls near the centre of the container 
between the two roll patches are compressed so that their wavenumber again exceeds 
the value necessary to trigger the skew-varicose instability. For larger aspect 
ratios, the addition of the extra roll produces less distortion of the pattern and may 
not be enough to cause a sufficient distribution of the phase contours. In that case, 
we would suggest that  the focus instability, this time with m = 2 so that the induced 
mean flow is quadripolar rather than dipolar, may serve to initiate the finite- 
amplitude state, although we have not yet carried out these calculations. (The reader 
should recall that the stability analysis is not changed by putting D(r = 0, t )  = 0 so 
that the umbilicus stays on the sidewall and the outer portion of the roll patch is 
compressed.) The key point to make, then, is that the state to which the pattern 
relaxes after the disappearance of the dislocations, is either itself unstable or 
sufficiently close to an unstable state that it is strongly influenced by the unstable 
manifold of the latter. 

In all these cases, the time dependence does not involve a disordered spatial state 
and would appear to be described by low-dimensional dynamics (Greenside et al. 1988 
found a Hausdorff dimension of less than 3 for their model system) although no 
useful suggestion on how to coordinatize the phase space has been yet suggested. 
However, as the Rayleigh number is increased further, to the point where the centre 
of the wavenumber distribution k, passes through the skew varicose boundary, we 
expect and predict a qualitative change in the dynamics. This occurs for R = 7R, at 
P = 2.5, about R = 2R, for P = 0.71 and almost immediately R 2 R, when P = 0.1,  
although because of finite-aspect-ratio effects, these numbers should be taken as 
lower bounds. Once k, crosses the skew-varicose boundary, every roll in the texture 
is unstable and we expect the nucleation of many defects and a resulting rapid 
decorrelation of the spatial pattern, in short a kind of macho rather than wimpy 
turbulence. 

4. Conclusion 
In  this paper, we have derived the phase diffusion and mean drift equations for 

convection patterns, tested their predictions against known theoretical results, made 
some new predictions and compared them with experimental evidence. While this 
contribution represents a major step forward, it does not, alas, ‘solve’ the problem. 
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A theory that insists that the amplitude is everywhere slaved to the phase gradient 
does not provide the means for handling dislocations, disclinations and foci 
singularities and, as we have discovered, defects are an integral part of the pattern 
texture and play central roles in its dynamics. It is this challenge, the inclusion of 
a particle or singular component of the field, that we principally address in our 
concluding remarks. 

We first remark that the initial boundary-value problem represented by (1.1) and 
(1.2) is ill-posed mathematically. The reason for this is that, for a large class of but 
not all initial conditions, the wavenumber k: can evolve so as locally to exceed the 
values for the stability borders of the Busse balloon. At this point, (1.1) is like a 
nonlinear reverse heat equation and so requires a regularization term. Our previous 
work with model equations suggests that this regularization term can be 
approximated in certain cases by the biharmonic term e2V4O. However, we saw 
when we integrated the finite amplitude of the skew-varicose instability that this 
regularization was not quite sufficient close to the nucleation of a defect. As both the 
mathematics and the physics of the situation show, the instability is never arrested 
and, in the vicinity of the anticipated dislocation, the wavenumber becomes very 
large. At this stage is passes through the marginal stability curve and carries the 
validity of our theory right out the window with i t  ! Indeed, a t  the marginal stability 
boundary, the amplitude, if still slaved (which we believe from evidence from simpler 
models is approximately true), is zero. For larger k, the amplitude must become a 
free parameter in the theory, namely an active rather t,han passive order parameter. 

Some may argue that this is not enough and that as soon as the field approaches 
the zero state one must include as additional order parameters the full set of modes 
associated with the centre manifold of the zero state a t  the marginal stability 
boundary. This would include, for example, a combination of rolls with all directions. 
However, we shall suggest that this is not necessary, that because the wavenumber 
passes through the marginal stability boundary only locally, the outer solution near 
these defects effects a bias in the choice of roll direction at the defect so that in 
general it is sufficient to consider only the amplitude of that wavevector which is 
dominant in the neighbourhood of the singularity as the extra active order 
parameter. (In special cases, where one might be near parameter values at which 
different planforms are equally likely, then this would not be true and the defect case 
may serve as the nucleation point of the new phase. Coullet (private communication) 
argues that grain boundaries (which are line singularities) do indeed play such a role. 

Another instance in which we found the phase diffusion - mean drift description 
inadequate was near regions of large curvature of rolls such as a t  the centre of foci 
singularities. As we have seen in $3.2 and Appendix E, even the stability problem of 
circular rolls is extremely delicate owing to the behaviour of the eigenmodes near the 
focus. We could prove stability for s < 1 with (3.34). In order to treat the unstable 
region in parameter space, it was necessary to know exactly what the phase 
perturbation does near r = 0 and to accomplish this we had to match the solution to 
the behaviour of an active amplitude parameter there. Even the case of stationary 
circular patterns is non-trivial and, as pointed out in the works of Brown & 
Stewartson (1978) and Pomeau, Zaleski & Manneville (1985), requires the 
consideration of the behaviour of the amplitude a t  the focus. 

How do we remedy this situation Z In Appendix E, we indicate what the amplitude 
regularization is near foci. Here we discuss dislocations. We gain some insight by 
thinking back to the case of small-amplitude convection, valid near R = R, and 
correctly described by the Newell-Whitehead-Segel equation for the complex 
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amplitude w = A eie which includes both amplitude A and phase 8. It is well known 
that the two-dimensional version of this equation in a non-rotational invariant 
situation (as is the case here because of the influence of the outer solution), 

(4.1) 
aW _- V'W = (R-R,) w-w'w*, at 

also known as the Ginzburg-Landau equation, has vortex solutions for which the 
complex amplitude w is smooth but which, when written in polar form w = Ae", 
involve a 27c phase discontinuity along contours surrounding the vortex. What we 
have been able to do in model equation situations (e.g. for the Swift-Hohenberg 
equation and for (4.1) ; the full Oberbeck-Boussinesq equations are too complicated) 
is to write down what is the amplitude regularization of the phase diffusion equation. 
Then we introduce the new complex amplitude w = A exp iO/s in these coordinates, 
the equations have removable singularities. The problem of matching involves an 
intermediate regime which connects the inner solutions with the outer phase 
diffusion approximation in which the amplitude is slaved. We emphasize that in this 
intermediate region, the corrections to the outer phase diffusion - amplitude (in the 
outer region, to leading order the amplitude is determined by an algebraic equation 
with corrections involving amplitude derivations) - mean drift equation, involving 
the amplitude terms are the largest. In  these model situations, we are close to having 
a general description of patterns which combine the advantages of the Cross-Newel1 
formalism, which has rotational invariance, and the Newell-Whitehead-Segel 
equations, which have an amplitude component but no rotational invariance. We 
shall report on these ideas shortly. 

Our programme for the next stage of this research is: 
1. Use the theory just described to describe the nucleation, motion and 

annihilation of dislocation pairs for (4.1) beginning with initial conditions 
w = (R -R, - K2)iexp iKx, where the wavenumber K lies outside the Eckhaus 
stability boundary, and compare the results with the experiments of Lowe & Gollub 
(1986) and theory of dislocation velocities of Bodenschatz, Pesch and Kramer (1989). 

2. Derive the partial differential equation for the amplitude for the fluid equations 
and show that, in the infinite-aspect-ratio limit s --f 0, the presence of the amplitude 
correction is crucial but its exact form is not, much like the case of the drag on 
bodies in fluids at the infinite-Reynolds-number limit (D' Alembert paradox). We 
would then like to be able to use the amplitude terms to design weak solutions to the 
phase diffusion-mean drift equations which tell us how to apply conditions to these 
variables so as to  be able to continue the solutions through the formation of 
singularities. This problem has much in common with, but may be simpler than, the 
vortex reconnection problem in high-Reynolds-number flows. 

3. Carry out the linear stability analysis and calculate the finite-amplitude state 
for the focus instability. 

In  short, the programme we have outlined seeks to construct the first macroscopic 
field-particle theory from an underlying set of governing equations a t  the microscopic 
level. A tall order '2 Perhaps. But then again, there is hardly a more suitable context 
than convection patterns in which to make the attempt. 
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Appendix A. The vorticity formulation 
We now give an alternative derivation of the phase diffusion and mean drift 

equations using the vorticity formulation. It will provide some insights and also 
serves as an independent check of the coefficients in the phase diffusion equation. The 
advantage of the vorticity formulation is that it eliminates the pressure term from 
(2.3) but we have seen how a slowly varying pressure field is built up by the mean drift 
fields driven by horizontal Reynolds stresses. It is important, therefore, to see how 
this slowly varying pressure term is reintroduced. 

We now take as our governing equations (2.6), (2.4) and (2.5) and write the 
equations for the perturbed vorticity and temperature fields. In the local across- and 
along-the-roll coordinates, these equations at first order in the perturbation fields 
decompose into two uncoupled systems. The equations for perturbation temperture 
T,, along the roll perturbation vorticity l;ll = (aC,/az) - k ( a / M )  w1 and the continuity 
equation gives us three equations for I&, w1 and T,: 

( k2$+ &- '12, 
aT0 aT, 

= O,--D-+B,(k V) T,, (A 2) ue ue 

The two remaining equations for across-the-roll and vertical vorticities do not, on the 
surface, involve 3,, wl ,  but only v",. They are 
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I 
+ ( R  x V) T, + ( k 2 @ + g )  a 2  (& x V) wo} 

d ( :i2 k 
- a c -  a i a  A 

R, = (k x V) -w,-+ (k x V) -C; -----.iii(k x V) k2 - C1 k2 -+- (k  x V) 2. 
az k a8 2 k 2 W  

(A 6) 

The solvability of (A 1) (A 2 )  (A 3 )  for GI, wl, will give the phase diffusion equation. 
However, before we apply the Fredholm condition, we must first consider the 
compatibility of (A 4) and (A 5), two equations for one unknown. We must have 

which can be easily verified. Integrating (A 5 ) ,  we find 

Lv", = P2+F(z), (A 8 )  

where R, = aP2/iM and F ( z )  is an arbitrary function of z .  The compatibility condition 
(A 7 )  shows that F is independent of 8 and z and, therefore, up to dependence on the 
slow variables, is a constant F,. But it cannot be determined at this order. In  fact it 
is found at the next order, order 2. This extra constant F, will play the role of VP,, 
a constant pressure gradient, and will drive a Poiseuille-like mean flow 'u1, (the 
solution of Lv", = F,), nonlinearly coupled to  the convective structure. 

We find an equation for F, by looking a t  the vorticity equation (2.6) a t  order c2 and 
averaging over 19 and z .  The components parallel and perpendicular to the rolls give 
no non-trivial contributions but the vertical vorticity equation gives 

(2) = a ( V  * (ol * u,+o, - U1-U0 * O 1 - U 1  * 0,)) 

or ( ~ ( a z w l - a ~ u l ) )  = (V x v - (uouo)). (A 10) 

(A 9) 

This gives as an equation for F, (which now is a slowly varying function of X, Y and 
T). However, we are not yet out of the woods because 6, and d, which were, up to 
now, uncoupled, are constrained to satisfy continuity which in these variables takes 
the form : 

v ' ( is , )  - z" * v x (Ra,) = 0. (A 11)  

Therefore, if dl  were to be solved from (A 1)-(A 3) by first applying the Fredholm 
alternative for t,hat system of equations and then determining 12, from what remains, 
the three equations (A 7) ,  (A 10) and (A 11)  give us three conditions for two 
unknowns, d, and F,. 
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The only way to overcome this overdeterminacy is to constrain 3, as follows. 
Decompose the total velocity field ti, = (3,,v",) into a mean and fluctuating 
component 

(A 12) 

where al, averaged over 8 is zero. Instead of calculating 3, from (A 1) (A 3) on a 
complete basis which contains both {g,(z) eim@)z$, ,=, and a &independent mean 
flow g,(z) with non-zero vertical average, we make the decomposition (A 12) and 
calculate 3;, 6; in the constrained original basis used for Go, Go using no mean flow. 
The equation for u; now will have terms on the right-hand side containing U,. The 
resulting solvability condition, the phase diffusion equation, will contain an unknown 
function B(z ,X ,  Y ,  T), but this together with v"(z,X, Y ,  T )  will be determined by the 
pair of equations (A 10) and (A 11). We shall obtain exactly as before the mean drift 
equation (1.2). 

a, = u, +a;, 

The phase diffusion equation reads : 

+ (G0(R * V )  T,, W A )  + (V(k3,) ,  TA) 

+ G { ( Z , ( d .  v)*o,3A)-(30*0V * R , 3 A )  

In  (A 13), CA,  wA and TA are the solutions to the adjoint equations for (A 1)-(A 3). 
They are different from the previous adjoint solutions. Even though the coefficients 
in the equations for the phase diffusion and mean drift equation are derived from a 
completely different starting point, a numerical check of the coefficients show they 
agree to  better than 1%. 

Appendix B. Compatibility of two approaches 
In this Appendix we shall briefly sketch how we can deduce the same diffusion 

equation as (2.54) when working with the full basis including the extra mode go(z) 
which has a non-zero flux associated with it. A detailed and quantitative check of the 
equivalence has to be done numerically (and was done only for the derivation of the 
mean drift equation itself) since the coefficients appearing in the two versions of the 
phase equation involve adjoint vectors calculated numerically on different bases. 
The derivation proceeds in the same way as in $2 except that in (2.34) terms on the 
right-hand side'containing U, are absent. They are included in the left-hand side as 
coefficients of go(z). The term Vp, ,  which previously did not project on the restricted 



242 A .  C. Newell, T .  Passot and M .  Souli 

basis of zero flux, will now be present in the phase diffusionnequation as (k - Vp,,  tiA) 
which replaces terms containing U,. Let us then calculate kVp, as a function of' U,, 
The equations for the total horizontal velocity Q,, w,, T,, p ,  are 

a 3Pl - a 3  2 
a2 a 0  a0 

(Icza; + a:) s, - 2 a ~ c a , ( ~ ,  c,) - (T- (0, w1 + C, wo) - ~c - - 

aG0 
-D, ,+FV-  ( f Q ~ ) + ( f . V ) ( p , + p , ) ,  (B 1) 

a aP 
(k2a; +a:) wl- (Tk: a,(so w1 + c1 wo) - 2(T- (wo wl) -A+ T, aZ az 

aw, aw 
a0 ae = U @ , - - - - D ~ + ( T V  - (LCow0), (B 2 )  

aTo aTo 1 

= O,- -D-+V * (kCoTo), (B 3) a0 ae 

When solving this system on the full basis, we have for til: 

dl = CL, 0, + all Ox, + 2 ~ , ,  Ox, + aZ2 O Y y  + ak Vp, .  (B 5 )  

It is convenient to introduce a new independent variable in the system, namely $, 
the stream function of the mean horizontal velocity. We write 

(C) = F Z x V $ . z .  (B 6) 

p ,  can be expressed in terms of $ by integrating (B 5) with respect to 0 and z ,  
whereupon we find 

We see clearly that one of the combinations of (f . Vp, ,  0*) will be an advection term 
of the form k V where V = V x $2. The equation for $ is obtained in the same way 
as in $2 by replacing p ,  in terms of 3 in (B 5) and using this expression for C, in (2.29) 
and (2.30) after which we take the curl to eliminate Vp,. The equations we obtain 
have exactly the same form as (2.49) and (2.62). 

Appendix C. Further comments on the numerical calculations 
The complete calculation of the coefficients for the phase diffusion (1 .1)  and mean 

drift (1.2) equations has been carried out with both the momentum formulation 
(referred to as I) and the vorticity formulation (referred to as 11). We shall present 
here the detailed steps for both cases. The first step involves the computation of the 
steady roll solution for all values of the wavenumber lying inside the marginal 
stability curve. For each Rayleigh and Prandtl number, a set of values of the 
wavenumber k is chosen, spanning the whole interval located inside of the marginal 
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stability curve. The basis chosen for the velocity and temperature fields is the same 
in I and I1 and given explicitly in $ 2 .  In formulation I we also have to choose a 
Galerkin basis for the pressure. A good choice is {eimscosnn(z+$)}, the same as one 
would choose for the zero-stress boundary condition case (called the free-free case), 
since in both cases no conditions on the horizontal boundaries are given on the 
pressure. Note that p is only determined up to a constant p,. The equations of 
formulation I a t  order EO read: 

~ ~ ~ a ; + a ; ~ . i i o - ~ ~ . i i o ~ a , . i i o + ~ o a , ~ , ~ - k a , p o  = 0, (C 1) 

(P a; + a;) wo - a(co IC a, 6, + wo a, 6,) - a,po = 0, (C 2) 

(mi+,;) ~ ~ - g ( . i i ~  ka, T, +woa, T,) +RW, = 0, (C 3) 

Ica,uo+azw0 = 0. (C 4) 
Having chosen the bases in which we wish to expand the fields, the next step is to 
project these equations onto some basis functions in order to obtain the right number 
of algebraic questions for the coefficients in the former expansions. Since the fields 
themselves are decomposed in different bases, a priori no single projection appears 
more natural than any other. As a guide, consider what we do in the free-free case 
for I in which case the fields Go and wo are decomposed on to the bases {eimOhn(x)} and 
{eime f n ( z ) }  respectively. In  this case, the algebraic questions can be derived directly 
by identification, which is equivalent to projecting (C 1) onto the basis {eimBh,(z)) 
and (C 2) and (C 3) onto the basis {eimsfn(z)}. The continuity equation (C 4) is 
eliminated by using the relation 

wmn = k m  u m n .  

Returning to the rigid-rigid boundary conditions, this suggests that it is reasonable 
to project (C 1) onto the basis {eimeg’,(z)}, (C 2) onto the basis {eim8gn(x)} and (C 3) 
onto the basis {eimefn(z)}. This choice of projection for (C 2 )  turns out to give a correct 
and rapid convergence to the solution. Turning now to formulation 11, we find that 
the equation for the vorticity along the rolls is best projected onto the basis 
{eim8g,(z)} and the equation for the temperature onto the basis {eimofn(z)}. In  each 
case, we obtain a set of algebraic equations that we solve using a Newton’s method. 
In solving this system, it is vital to find a good starting approximation. To get this 
approximation, we first solve for the coefficients interatively in terms of the 
amplitude A of the lowest-order mode in the horizontal velocity field u a t  values of 
a wavenumber k,,, near the right-hand edge of the marginal stability curve where 
the amplitudes are very small. Each field is written in its appropriate basis with the 
coefficient of the nth component of the basis vector used to describe the vertical 
structure proportional to An, e.g. u = ~ummeimeg’,(z)An.  It is sufficient to use the 
first two terms, -2  < m < 2, 1 < n < 2 .  Substituting this expansion into the 
equations, we get linear equations for u,, and T,, and a nonlinear dispersion 
relation determining A in terms of the chosen k and the Rayleigh and Prandti 
numbers. Having obtained a good approximation when A is small, we can use this 
to apply the Newton method. As we move the wavenumbers to lower values of k well 
within the marginal stability curve, we can use as the first guess the values of the 
solutions computed a t  the previous k .  We want to stress that the step size in k is 
varied as the ‘amplitude ’ (see figure 9 e  which draws <G:) /k2  as a function of k) of the 
solutions and its derivative with respect to k becomes very large. Since we also need 
to be able to differentiate all the calculated functions with respect to k ,  we interpolate 
all coefficients of the fields using cubic spline polynomials. We find that the 
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convergence for the System I requires more modes in the vertical direction than for 
System 11. One could argue, therefore, that  the vorticity formulation is slightly 
better adapted for numerical purposes. Convergence is tested by checking the 
Nusselt number (the non-dimensional heat flow) against the existing results of Clever 
& Busse (1974, 1979). 

The second major step in the computation involves determining, for each k, the 
null eigenvector for the adjoint linear system of equations (2.39)-(2.42a) or 
(A 1)-(A 3). Here two methods are possible. The first one consists in directly solving 
the adjoint linear system (2.44)-(2.48), which gives the components of QA, wA,  TA, p A  
onto their respective bases : 

vms g 6 ( 4 ) ,  vme g,(4), (eirn0jn(z)>, kims h,(z)). 

The second method, which we adopt, is to build the matrix equivalent of the linear 
systems (2.39)-(2.42a) and (A 1)-(A 3) by projecting the equations on the same basis 
functions as we used for the nonlinear system. We then obtain the algebraic 
equations (2.82), (2.83). One advantage of this formulation is that it is possible to 
check the numerics by comparing the null eigenvector of the matrix A, with 
(a/af?)(Q,,w,, T',p,). To find agreement t o  within the precision required in the 
calculation of the nonlinear system. The solvability condition is computed directly 
on this algebraic system by taking the transpose of A, and calculating its null 
eigenvector. As discussed already, we use a singular-value decomposition method 
which is found to be much more reliable and robust than the direct calculation of the 
eigenvectors. The application of the solvability condition on the algebraic system 
means that a term like (k - Vpo ,  GA) in (2.49) is evaluated by expressing the X- 
derivative a/aX as @,,(k,/k) (a/ak) + @,,(k,/k) (alak), namely in terms of products 
of second derivatives in 0 with derivatives with respect to Ic. Finally we mention how 
we calculate the functions B(k)  from 7(k), y, , (k) ,  y,,(k), y, ,(k).  Since we evaluate all 
coefficients with k, = k, k, = 0, we can find for B(k) by solving (using a Runge-Kutta 
method) the equation 

with dB/dk = y l J k  at Ic = k,, the zero of y, , (k) .  The functions B, and B, are 
calculated in a similar way. 
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Appendix E. The focus instability 
In this Appendix, we study the stability of target patterns using a coupled 

phase-amplitude-mean drift formulation. As mentioned in 53.2, i t  is absolutely 
necessary to regularize the phase diffusion - mean drift equations close to the centre 
of the patch where the strong curvature of the rolls invalidates the phase description. 
Here we calculate the shape of the unstable mode of the focus instability and study 
the influence of the aspect ratio r = e-l on the stability criterion. In  contrast to  the 
case of a dislocation, the amplitude does not vanish a t  the centre of a focus. In  fact, 
it is larger there (see Brown & Stewartson 1978; Pomeau et al. 1985). One possibility 
for regularizations is to add the next-order term in the phase equation, which takes 
the form of a biLaplacian (Cross-Newelll984). However, except for special cases (see 
Meiron & Newel1 1985) for which the dislocation is stationary, this kind of 
regularization proves to be inadequate, especially for defect cores and time- 
dependent situations. A much more attractive possibility, and one that fits naturally 
with the idea that, near singularities, the amplitude becomes an independent and 
active order parameter, is to use the amplitude. Indeed, it turns out that in the region 
in which one matches the solution a t  a dislocation core to the outer solution described 
by the phase equation, the amplitude correction is more important. As mentioned in 
$4, we have as a goal to compute the appropriate amplitude equation for the 
Oberbeck-Boussinesq equations, but for the purposes of this Appendix shall use the 
model equations (2.42)) (2.43) of the Cross-Newel1 paper. We conjecture that, for 
sufficiently small E ,  the results on the stability of the focus are relatively insensitive 
to the exact form of the amplitude equation. In  this model, the diffusion term in the 
amplitude equation has been simplified by a Laplacian, the phase equation retains 
its form with a simplified mean drift. The equations read: 

A 2 ( 0 , + y k  * V)+V - [kA2F(k)] = 0, (E 1) 

E2((a,-A)A = , u ’ ( ~ ) A - A ~ ,  (E 2) 
V$ = V x (kV * (kA2)}  

V = V x $ z .  

The notation is the same as used in the rest of the paper; ( r ,  8) will designate polar 
coordinates in the plane, 7 ( k )  is replaced by the active order parameter A2 and B(k) 
by A 2 F ( k ) ,  y is -pulp. We shall consider only the simplest stationary solution 0, 
= k, r ,  A = ,u(k,) where F(k , )  = 0, avoiding the consideration of wall boundary layers 
necessary if rolls of wavenumbers k, did not ‘ fit ’ in the box. The above simplifications 
lead to the boundary conditions k = k,(k,) and A = ,u(k,) on the boundary of the 
container ( r  = 1). Another condition for 0 is the conservation of the number of rolls. 
Let 

(E 5) 

For brevity we consider only the most unstable mode m = 1. A linearization of the 
equations leads to 

0 = k , ( r+D( r ,  8, T)), A = p ( k , )  [ I  +a(r,  8, T ) ] ,  $ = $ ( r ,  0 , T ) .  
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where 

The boundary conditions take the form: 

y(0) = w(0)  = 0, y( 1) = w( 1)  = 0,  D( 1)  = 0. (E 9) 

The last two conditions have already been discussed. A study of (E 6)-(E 7)  near the 
origin r = 0 leads us to the first. Otherwise solutions are unbounded. The finiteness 
of the box is now measured by the parameter 7. When 7 goes to zero (large 
containers) one recovers (3.34) where s = s1 + s2. In this case the amplitude is slaved 
to the wavevector within the whole container by the relation: 

w = -szy. (E 10) 

For a finite value of 7 there is a boundary layer of width 7 near the origin near which 
the algebraic relation (E 10) no longer holds. One finds instead from (E 6) that 

w = s l y ,  (E 11) 

and both w and y are proportional to r as r+O.  These facts assure us of the 
convergence of both the radial and azimuthal velocities near the origin. Inner and 
outer solutions of (E 6) and (E 7)  can be found in terms of generalized Bessel 
functions with both real and imaginary index. Matching these solutions requires the 
detailed analysis of a fourth-order system, and so we chose to solve this system 
numerically. The behaviour near the origin indicates that  a Galerkin expansion of 
both y and w in terms of the Bessel functions J1(car), i = 1, . . . N ,  is appropriate. They 
form an orthogonal basis with respect to the scalar product (f, g) = j t  rf(r) g ( r )  dr  if 
ci is the ith positive zero of J1. Writing 

N N 

y = c y.IJ,(a,r),w = 2 WiJ,(o-ir), 
i=l (-1 

we obtain the following generalized eigenvalue problem : 

where M and L are the following block matrices: 

with 

Ii;) = tJ1(fTk t) 4(ait) dt = +&ki[Ji(ck)]2, = 1; t3J1((Tk t )  Jl(l((Tit) dt. 

We find (i) The point a t  which instability (c = 0) occurs depends strongly on 
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FIQURE 15. Isovalues of 101 calculated by (E 5) and streamlines of the mean drift field. 

RIR, w 81 8 2  6 1  fl2 

2.0 2.73 -0.02 0.66 10.81 10.82 
2.5 2.84 -0.06 -0.97 8.93 8.61 
3.0 3.0 -0.1 1.23 7.16 6.0 
3.5 3.16 -0.18 1.47 5.84 3.31 
4.0 3.33 -0.23 1.68 4.42 -0.91 
4.5 3.5 -0.28 1.87 3.14 -6.85 

TABLE 3. Values of ul (at 7 = 0.05) and cr2 (at 7 = 0.01) for different values of R at P = 6.1 

s = s1 + s2 and only weakly on s1 - s2 and w .  (ii) The growth rate a passes through zero 
on the real axis. (iii) The limit 7 -+ 0 is singular owing to the lack of regularity on the 
eigenmodes near the origin for s > 1.  (iv) For values of w = 1, s2 = 2.5, we found the 
instability to occur a t  s = 2.4 when 7 = 0.1, s = 1.95 for 7 = 0.05 and s = 1.45 for 
7 = 0.01. (v) We plan to investigate the behaviour a t  lower values of 7 more carefully 
but from preliminary results a t  the lowest value of 7 we were able to resolve suggest 
a value of s of about 1.3. It is probably quite fortuitous that the transition seen by 
Steinberg et al. occurred a t  R = 3.5 for which s = 1.29, especially since the 7 in their 
case is quite large. 

Although our results are not rigorous, we can say definitely that s = 1 provides a 
lower bound for instability. We believe that the behaviour of the most unstable 
eigenmode near r = 0 (whether outside the boundary layer i t  diverges like -1nr or 
rPa, 01 > 0) is very sensitive to s- 1.  (vi) When s decreases below unity, the growth 
rate u quickly falls, indicating that perturbations from the circular state are heavily 
damped. In these cases, one needs a large forcing, either from the smaller k again a t  
the boundary or between the circular patches, to sustain the mean drift. Table 3 
displays the values of a for 7 = 0.05 (ul) and 7 = 0.01 (a2) at P = 6.1 and for different 
values of R. Note that we took the value of w and s2 from (E 8) but calculated s1 by 
s1 = s-s2 with s given from table 1. This takes into account the terms of the mean 
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drift equation that were neglected in (E 3). Observe that the decay rates are 
relatively insensitive to aspect ratio when they are large! They are very sensitive, 
however, near the stability point. 

We close this Appendix with a word about the graph of the eigenmodes y(r)  and 
w + s 2 y  for s1 = -0.5, s2 = 2.5 and 7 = 0.5, (figure 14, see 53.2). The combination 
w+s, y corresponds to the unslaved part of the amplitude. It is concentrated a t  the 
origin in the boundary layer of width 7.  Observe from figure 14 that the amplitude 
of w+s,, is approximately one third that of y a t  its maximum where the roll 
comparison is greatest. We also display on the same graph the functions D ( r )  and 
q5(r). Figure 15 shows the corresponding spatial configuration of the off-centred rolls 
with the mean drift. 
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